相关习题
 0  246439  246447  246453  246457  246463  246465  246469  246475  246477  246483  246489  246493  246495  246499  246505  246507  246513  246517  246519  246523  246525  246529  246531  246533  246534  246535  246537  246538  246539  246541  246543  246547  246549  246553  246555  246559  246565  246567  246573  246577  246579  246583  246589  246595  246597  246603  246607  246609  246615  246619  246625  246633  266669 

科目: 来源: 题型:解答题

4.某单位举办抽奖活动,已知抽奖盒中装有“天府卡”和“熊猫卡”共10张.其中.天府卡”比“熊猫卡”数量多.抽奖规则是:参与者随机从盒中同时抽取两张卡片就完成一次抽奖,抽后放回.若抽到两张“熊猫卡,即可获奖,否则不获奖.已知一次抽奖中,抽到“天府卡”和“熊猫卡”各一张的概率是$\frac{7}{15}$.
(Ⅰ)求某人抽奖一次就中奖的概率;
(Ⅱ)现有3个人各抽奖一次,用X表示获奖的人数,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在平面直角坐标系中有一点列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…对?n∈N+,点Pn在函数y=ax(0<a<1)的图象上,又点An(n,0),Pn(an,bn),An+1(n+1,0)构成等腰三角形,且|PnAn|=|PnAn+1|若对?n∈N+,以bn,bn+1,bn+2为边长能构成一个三角形,则a的取值范围是$\frac{\sqrt{5}-1}{2}$<a<1.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设函数f1(x)=x2,f2(x)=2(x-x2),ai=$\frac{i}{99}$,i=0,1,2,…,99,记Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,则下列结论正确的是(  )
A.S1=1<S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f′(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$ln(2n+1)+$\frac{n}{2n+1}$(n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,满足:a2+a4=18,S7=91.递增的等比数列{bn}前n项和为Tn,满足:b1+bk=66,b2bk-1=128,Tk=126,
(1)求{an}、{bn}的通项公式
(2)设数列{cn}对?n∈N+,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求c1+c2+…+c2015

查看答案和解析>>

科目: 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别是a,b,c,且满足:a2=(b-c)2+(2-$\sqrt{3}$)bc,又sinAsinB=$\frac{1+cosC}{2}$.
(1)求角A的大小;
(2)若a=4,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年的高中毕业生中随机抽取两名,记X表示两人中成绩不合格的人数,求n的分布列及数学期望;
(3)经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

17.设抛物线C:x2=4y的焦点为F,已知点A在抛物线C上,以F为圆心,FA为半径的圆交此抛物线的准线于B,D两点,且A、B、F三点在同一条直线上,则直线AB的方程为y=$±\frac{\sqrt{3}}{3}$x+1.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知圆O:x2+y2=16,点P(1,0),过P点交圆O于A,B两点.
(1)若以AB为直径的圆经过点C(4,2),求直线l的方程;
(2)若2|AP|=3|BP|,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图AB是圆O的一条弦,过点A作圆的切线AD,作BC⊥AC,与该圆交于点D,若AC=2$\sqrt{3}$,CD=2.
(1)求圆O的半径;
(2)若点E为AB中点,求证O,E,D三点共线.

查看答案和解析>>

同步练习册答案