相关习题
 0  246444  246452  246458  246462  246468  246470  246474  246480  246482  246488  246494  246498  246500  246504  246510  246512  246518  246522  246524  246528  246530  246534  246536  246538  246539  246540  246542  246543  246544  246546  246548  246552  246554  246558  246560  246564  246570  246572  246578  246582  246584  246588  246594  246600  246602  246608  246612  246614  246620  246624  246630  246638  266669 

科目: 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为,F1和F2,上顶点为B,BF2,延长线交椭圆于点A,△ABF的周长为8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l⊥AB且与椭圆C相交于两点P,Q,求|PQ|的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数y=2sin(ωx+φ)(ω>0)与直线y=a(a>0)相切,且y=a与x轴及函数的对称轴围成的图形面积为π,则ω的值不可能是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,已知A1,A2,B1,B2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点,△A1B1B2的外接圆为圆M,椭圆C过点(-1,$\frac{\sqrt{6}}{3}$),($\frac{3}{2}$,$\frac{1}{2}$).
(1)求椭圆C及圆M的方程;
(2)若点D是圆M劣弧$\widehat{{A}_{1}{B}_{2}}$上一动点(点D异于端点A1,B2),直线B1D分别交线段A1B2,椭圆C于点E,G,直线B2G与A1B1交于点F.
(i)求$\frac{G{B}_{1}}{E{B}_{1}}$的最大值;
(ii)E,F两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

18.函数f(x,y)=$\left\{\begin{array}{l}{\frac{xy}{\sqrt{{x}^{2}+{y}^{2}}},{x}^{2}+{y}^{2}≠0}\\{0,{x}^{2}+{y}^{2}=0}\end{array}\right.$在点(0,0)处(  )
A.连续且可导B.不连续且不可导C.可导且可微D.可导但不连续

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知F1(-$\sqrt{n}$,0),F2($\sqrt{n}$,0),F3(0,$\sqrt{3}$),点P为曲线C上任意一点,若F1F3⊥F2F3,且|PF1|与|PF2|是关于x的方程x2-4x+q=0的两根
(1)求曲线C的方程
(2)已知Q为曲线C的左顶点,不与x轴垂直的直线l与曲线C交于A、B两点,且∠AQB=$\frac{π}{2}$
     ①判断直线l是否过x轴上的某一定点N,并说明理由
     ②设AB的中点为M,当直线OM与直线l的倾斜角互补时,求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:选择题

16.下列命题中,真命题是(  )
A.?x0∈R,使得e0≤0B.sin2x+$\frac{2}{sinx}$≥3(x≠kπ,k∈Z)
C.函数f(x)=2x-x2有两个零点D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右焦点到直线y=x+$\sqrt{6}$的距离为2$\sqrt{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知点M(2,1),斜率为$\frac{1}{2}$的直线l交椭圆E于两个不同点A,B,设直线MA与MB的斜率分别为k1,k2
①若直线l过椭圆的左顶点,求k1,k2的值;
②试猜测k1,k2的关系,并给出你的证明.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知中心在原点,焦点在坐标轴上的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{1}{2}$,过直线l:x=4上一点M引椭圆E的两条切线,切点分别是A、B.
(1)求椭圆E的方程;
(2)若在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的任一点N(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以坐标原点为圆心,椭圆的短半轴为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右顶点B作两条互相垂直的直线l1,l2,且分别交椭圆C于M,N两点,探究直线MN是否过定点?若过定点求出定点坐标,否则说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴分别交于点A(-4,0),B(2,0),与y轴交于点C,其对称轴与AC交于点M,点D在这条抛物线上,且在第三象限.
(1)求这条抛物线所对应的函数表达式;
(2)求DM∥AB时点D的坐标;
(3)连结AB、DC,得到四边形ABCD,则四边形ABCD面积的最大值为16.

查看答案和解析>>

同步练习册答案