相关习题
 0  246492  246500  246506  246510  246516  246518  246522  246528  246530  246536  246542  246546  246548  246552  246558  246560  246566  246570  246572  246576  246578  246582  246584  246586  246587  246588  246590  246591  246592  246594  246596  246600  246602  246606  246608  246612  246618  246620  246626  246630  246632  246636  246642  246648  246650  246656  246660  246662  246668  246672  246678  246686  266669 

科目: 来源: 题型:选择题

10.二元一次方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$存在唯一解的必要非充分条件是(  )
A.系数行列式D≠0
B.比例式$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$
C.向量$({\begin{array}{l}{a_1}\\{{a_2}}\end{array}}),({\begin{array}{l}{b_1}\\{{b_2}}\end{array}})$不平行
D.直线a1x+b1y=c1,a2x+b2y=c2不平行

查看答案和解析>>

科目: 来源: 题型:填空题

9.记符号min{c1,c2,…,cn}表示集合{c1,c2,…,cn}中最小的数.已知无穷项的正整数数列{an}满足ai≤ai+1,(i∈N*),令bk=min{n|an≥k},(k∈N*),若bk=2k-1,则数列{an}前100项的和为2550.

查看答案和解析>>

科目: 来源: 题型:填空题

8.从3名男生和4名女生中选出4人组成一个学习小组.若这4人中必须男女生都有的概率为$\frac{34}{35}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,矩形ABCD中,AB=2,BC=4,以矩形ABCD的中心为原点,过矩形ABCD的中心平行于BC的直线为x轴,建立直角坐标系,
(1)求到直线AD、BC的距离之积为1的动点P的轨迹;
(2)若动点P分别到线段AB、CD中点M、N的距离之积为4,求动点P的轨迹方程,并指出曲线的性质(对称性、顶点、范围);
(3)已知平面上的曲线C及点P,在C上任取一点Q,线段PQ长度的最小值称为点P到曲线C的距离.若动点P到线段AB的距离与射线CD的距离之积为4,求动点P的轨迹方程,并作出动点P的大致轨迹.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,正方形ABCD所在平面与圆O所在平面相交于CD,CE为圆O的直径,线段CD为圆O的弦,AE垂直于圆O所在平面.
(1)求证:CD⊥平面AED;
(2)设异面直线CB与DE所成的角为$\frac{π}{6}$且AE=1,将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体,求该几何体的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

5.在圆锥PO中,已知高PO=2,底面圆的半径为4,M为母线PB上一点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为(  )   
①圆的面积为4π;
②椭圆的长轴为$\sqrt{37}$;
③双曲线两渐近线的夹角为π-arcsin$\frac{4}{5}$;
④抛物线中焦点到准线的距离为$\frac{{4\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

4.用符号(x]表示不小于x的最小整数,如(π]=4,(-1.2]=-1.则方程(x]-x=$\frac{1}{2}$在(1,4)上实数解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

3.记符号min{c1,c2,…,cn}表示集合{c1,c2,…,cn}中最小的数.已知无穷项的正整数数列{an}满足ai≤ai+1(i∈N*),令bk=min{n|an≥k},(k∈N*),若a20=14,则a1+a2+…+a20+b1+b2+…+b14=294.

查看答案和解析>>

科目: 来源: 题型:填空题

2.在极坐标系中,动点M从M0(1,0)出发,沿极轴ox方向作匀速直线运动,速度为3米/秒,同时极轴ox绕极点o按逆时针方向作等角速度旋转,角速度为2米/秒.则动点M的极坐标方程ρ=1+$\frac{3}{2}$θ.

查看答案和解析>>

科目: 来源: 题型:填空题

1.数列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,a1=2,则数列{an}的前2015项的积等于3.

查看答案和解析>>

同步练习册答案