相关习题
 0  246508  246516  246522  246526  246532  246534  246538  246544  246546  246552  246558  246562  246564  246568  246574  246576  246582  246586  246588  246592  246594  246598  246600  246602  246603  246604  246606  246607  246608  246610  246612  246616  246618  246622  246624  246628  246634  246636  246642  246646  246648  246652  246658  246664  246666  246672  246676  246678  246684  246688  246694  246702  266669 

科目: 来源: 题型:解答题

8.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)设bn=an•an+1,{bn}的前n项和为Sn,求证:Sn<$\frac{1}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

6.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为8.

查看答案和解析>>

科目: 来源: 题型:选择题

5.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,若F关于直线$\sqrt{3}$x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$一l

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,长轴长为2$\sqrt{2}$,离心率等于$\frac{\sqrt{2}}{2}$,
(1)求椭圆C的标准方程;
(2)直线l交椭圆于A、B两点,且AB的中点M为($\frac{1}{2}$,$\frac{1}{2}$),求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在棱锥A-BCDE中,∠BAC=$\frac{π}{2}$,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1.
(1)求证:EF⊥AD;
(2)求三棱锥F-ADE的高.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的$\sqrt{3}$倍,且经过点($\sqrt{3}$,1),O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点M(0,2),直线l经过M与椭圆相交于A、B两点,若S△ABO=$\sqrt{3}$,直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的$\sqrt{3}$倍,且经过点($\sqrt{3}$,1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线l1,与椭圆相交于A、B两点,过AB的中点N作直线l2与y轴交于点P,D为N在直线l上的射影,若|AB|2=4|ND|•|MP|,求直线l2的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.数列 {an}中 a1=$\frac{1}{2}$,前n项和 Sn=n2an-2n(n-1),n∈N*
(I)证明数列 {$\frac{n+1}{n}$Sn}是等差数列;
(Ⅱ)设 bn=$\frac{1}{{{n^2}(2n-1)}}$Sn,数列 {bn}的前 n项和为 Tn,试证明:Tn<1•

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知点A(3,1)是圆C:(x-m)2+y2=5(m<3)与椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个公共点,若F1,F2分别是椭圆的左、右焦点,点P(4,4),且直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范围.

查看答案和解析>>

同步练习册答案