相关习题
 0  246589  246597  246603  246607  246613  246615  246619  246625  246627  246633  246639  246643  246645  246649  246655  246657  246663  246667  246669  246673  246675  246679  246681  246683  246684  246685  246687  246688  246689  246691  246693  246697  246699  246703  246705  246709  246715  246717  246723  246727  246729  246733  246739  246745  246747  246753  246757  246759  246765  246769  246775  246783  266669 

科目: 来源: 题型:解答题

15.已知函数f(x)=|x-1|,且不等式f(x)+f(x+2)≤3的解集为M.若x∈M,|y|≤$\frac{1}{6}$,|z|≤$\frac{1}{9}$,求证:|x+2y-3z|≤$\frac{13}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知曲线C的极坐标方程是ρ=2cosθ,设直线L的参数方程是$\left\{\begin{array}{l}{x=-\frac{2}{3}t+2}\\{y=\frac{2}{3}t+5}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线L与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=$\frac{π}{2}$,AD=2$\sqrt{2}$,AB=3DC=3.
(1)在棱PB上确定一点E,使得CE∥平面PAD;
(2)若PA=PD=$\sqrt{6}$,PB=PC,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知∠ACB=90°,∠ACB所在平面外有一点P,PC=24cm,点P到∠ACB两边的距离均为6$\sqrt{10}$cm,求PC与平面ABC所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知2y•logy4-2y-1=0,$\sqrt{lo{g}_{x}\sqrt{5x}}$•log5x=-1,问是否存在一个正整数P,使P=$\sqrt{\frac{1}{x}-y}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且当x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知复数z1=4-mi,z2=6m+ni,且m、n∈R,若z2=z12,则实数n=(  )
A.-2,8B.2,-8C.64,-16D.16,-64

查看答案和解析>>

科目: 来源: 题型:解答题

8.设Sn是数列{an}(n∈N*)的前n项和,已知a1=4,an+1=Sn+3n,设bn=Sn-3n
(1)证明:数列{bn}是等比数列,并求数列{bn}的通项公式;
(2)令cn=2log2bn-$\frac{n}{{b}_{n}}$+2,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数f(x)=|x+1|+|x-a|
(1)若对于任意的实数x,不等式f(x)≥2恒成立,求实数a的取值范围;
(2)当a=2时,不等式f(x)≥k(x+1)+2恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

6.直线x-y-4=0上有一点P,它与两定点A(1,1)、B(2,3)的距离相等,则点P的坐标是($\frac{9}{2},\frac{1}{2}$).

查看答案和解析>>

同步练习册答案