相关习题
 0  246623  246631  246637  246641  246647  246649  246653  246659  246661  246667  246673  246677  246679  246683  246689  246691  246697  246701  246703  246707  246709  246713  246715  246717  246718  246719  246721  246722  246723  246725  246727  246731  246733  246737  246739  246743  246749  246751  246757  246761  246763  246767  246773  246779  246781  246787  246791  246793  246799  246803  246809  246817  266669 

科目: 来源: 题型:选择题

3.设p:f(x)=ex+lnx+$\frac{1}{2}$x2+mx+2在(0,+∞)内单调递增,q:m≥-4,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知实数x,y,z满足2x+y+3z=32,则$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值为$\frac{16\sqrt{14}}{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知两点M(-1,0)和N(1,0),若直线上存在点P,使|PM|+|PN|=4,则称该直线为“T型直线”.给出下列直线:①y=x+2;②y=-$\sqrt{3}$x+1;③y=-x-3;④y=$\frac{1}{2}$x+1,其中为“T型直线”的是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目: 来源: 题型:解答题

20.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆E的方程;
(2)已知直线l过点M(-$\frac{1}{2}$,0)且与开口向上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A、B两点,与y轴交于D点,若$\overrightarrow{AD}$=λ$\overrightarrow{AN}$,$\overrightarrow{BD}$=μ$\overrightarrow{BN}$,且λ+μ=-4,求抛物线C的标准方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,$\sqrt{2}$).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的离心率;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+$\frac{1}{{k}_{3}}$为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知圆O:x2+y2=4和点M(1,a).
(1)若过点M有且只有一条直线与圆O相切,求正数a的值,并求出切线方程;
(2)若a=$\sqrt{2}$,过点M的圆的两条弦AC,BD互相垂直.
①求四边形ABCD面积的最大值;②求|AC|+|BD|的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦点为F1,F2,点P在椭圆上,若PF1=4,则∠F1PF2的大小为$\frac{2}{3}π$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知棱长为a的正四面体可以在一个单位正方体(棱长为1)内任意地转动.设P,Q分别是正四面体与正方体的任意一顶点,当a达到最大值时,P,Q两点间距离的最小值是$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知F1,F2是椭圆$\frac{y^2}{4}+\frac{x^2}{2}$=1的两焦点,P是椭圆在第一象限弧上一点,且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=1,直线l:y=$\sqrt{2}$x+m与椭圆交于A,B两点.
(1)求点P的坐标;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知F1,F2是椭圆$\frac{x^2}{2}+\frac{y^2}{4}$=1的两焦点,P是椭圆在第一象限弧上一点,且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=1,若直线l:y=$\sqrt{2}$x+m(m∈(0,a]且a∈R)与椭圆交于A,B两点,
(1)求点P的坐标;
(2)若△PAB的面积的最大值为$\frac{{\sqrt{6}}}{2}$,求实数a的值.

查看答案和解析>>

同步练习册答案