相关习题
 0  246684  246692  246698  246702  246708  246710  246714  246720  246722  246728  246734  246738  246740  246744  246750  246752  246758  246762  246764  246768  246770  246774  246776  246778  246779  246780  246782  246783  246784  246786  246788  246792  246794  246798  246800  246804  246810  246812  246818  246822  246824  246828  246834  246840  246842  246848  246852  246854  246860  246864  246870  246878  266669 

科目: 来源: 题型:解答题

3.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=2,AD=CD=1,点E、F分别为AB、BC的中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)求证:BC⊥平面ACD;
(2)求几何体D-ABC的体积;
(3)在线段BD上是否存在一点G,使得平面GEF∥平面ACD,若存在,试确定点G的位置并予以证明,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

2.光点随机出现在圆C1:4x2+4y22的内部,则光点出现曲线C2:y2-cos2x=0,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]内部的概率为$\frac{16}{{π}^{3}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).

查看答案和解析>>

科目: 来源: 题型:解答题

20.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$ (φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程式2ρsin(θ+$\frac{π}{3}$ )=3$\sqrt{3}$,射线OM:θ=$\frac{π}{3}$与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a、b、c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X=|a-b|,则X的均值EX为(  )
A.$\frac{8}{9}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,若椭圆上存在点P满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,则此椭圆离心率的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

17.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条直线段,称为该直径的共轭直径.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1
(Ⅰ)若一条直径的斜率为$\frac{1}{2}$,求该直径的共轭直径所在的直线方程;
(Ⅱ)若椭圆的两条共轭直径为AB和CD,它们的斜率分别为k1、k2,证明:四边形ACBD的面积为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在如图所示的几何体ABCDEFG中,四边形ABCD是边长为4的正方形,DE⊥平面ABCD,DE∥AF∥BG,H是DE的中点,AC与BD相交于N,DE=2AF=2BG=4
(Ⅰ)在FH上求一点P,使NP∥平面EFC;
(Ⅱ)求二面角E-FC-G的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,射线OA与单位圆交于A,与圆x2+y2=4交于点B,过A平行于x轴的直线与过B与x轴垂直的直线交于P点,OA与x轴的夹角为x,若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OP}$+cosx(cosx+2$\sqrt{3}$sinx)
(Ⅰ)求f(x)的最值;
(Ⅱ)求f(x)的单调区间和图象的对称中心.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图所示的程序框图中,若函数F(x)=f(x)-m(0<m<2)总有四个零点,则a的取值范围是a≤-2.

查看答案和解析>>

同步练习册答案