相关习题
 0  246711  246719  246725  246729  246735  246737  246741  246747  246749  246755  246761  246765  246767  246771  246777  246779  246785  246789  246791  246795  246797  246801  246803  246805  246806  246807  246809  246810  246811  246813  246815  246819  246821  246825  246827  246831  246837  246839  246845  246849  246851  246855  246861  246867  246869  246875  246879  246881  246887  246891  246897  246905  266669 

科目: 来源: 题型:选择题

7.现有下列命题,其中正确的命题的序号为(  )
①命题“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},则A∩(∁RB)=A;
③直线(m+2)x+3my+1=0与(m-2)x+(m+2)y-3=0互相垂直的条件为m=-2;
④如果抛物线y=ax2的准线方程为y=1,则a=-$\frac{1}{4}$.
A.②④B.①②C.③④D.②③

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知α,β 表示平面,m,n表示直线,给出下列四个命题:
①若α∥β,m?α,n?β,则m∥n; ②若α⊥β,m?α,n?β,则m⊥n;
③若m⊥α,n⊥β,m∥n,则α∥β; ④若m∥α,n∥β,m⊥n,则α⊥β.
其中错误的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

5.集合M={1,2,-3m+(m-3)i}(其中i为虚数单位),N={-9,3},且M∩N≠∅,则实数m的值为(  )
A.3B.1C.2D.-9

查看答案和解析>>

科目: 来源: 题型:选择题

4.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),给出以下四个论断:
①它的图象关于直线x=$\frac{π}{12}$对称;
②它的图象关于点($\frac{π}{3}$,0)对称;
③它的周期是π;          
④在区间[-$\frac{π}{6}$,0)上是增函数.
以其中的两个论断为条件,余下的论断作为结论,则下列命题正确的是(  )
A.①③⇒②④或②③⇒①④B.①③⇒②④C.②③⇒①④D.①④⇒②③

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知实数ai,bi(i=1,2,3)满足a1<a2<a3,b1<b2<b3,且(ai-b1)(ai-b2)(ai-b3)=-1(i=1,2,3),则下列结论正确的是(  )
A.b1<a1<a2<b2<b3<a3B.a1<b1<b2<a2<a3<b3
C.a1<a2<b1<b2<a3<b3D.b1<b2<a1<a2<b3<a3

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知△ABC的三个顶点A(2,0),B(0,1),C(3,2)
(1)求BC边所在直线的方程;
(2)求BC边上的高所在直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为k的直线l交抛物线C于A(x1,y1)、B(x2,y2)两点,且y1y2=-4.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)若k=1,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且2Sn+3=3an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n+1)log${\;}_{\sqrt{3}}$an,记Tn=$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$,求证:2Tn<1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知△ABC的内角A,B,C的对边分别是a,b,c,且a2=b2+c2-bc.
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知sinα-cosα=$\frac{1}{5}$(0<α<$\frac{π}{2}$),则sin2α=$\frac{24}{25}$,sin(2α-$\frac{π}{4}$)=$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

同步练习册答案