相关习题
 0  246775  246783  246789  246793  246799  246801  246805  246811  246813  246819  246825  246829  246831  246835  246841  246843  246849  246853  246855  246859  246861  246865  246867  246869  246870  246871  246873  246874  246875  246877  246879  246883  246885  246889  246891  246895  246901  246903  246909  246913  246915  246919  246925  246931  246933  246939  246943  246945  246951  246955  246961  246969  266669 

科目: 来源: 题型:解答题

7.世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用.
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数y=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的值域为x+2y+4=4xy,则实数a的取值范围是[0,1].

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图1,在梯形狀ABCD中AD∥BC.AD⊥DC.BC=2AD,四边形ABEF是矩形,将矩形从ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1丄平面ABCD,M为AF1的中点,如图2.
(Ⅰ)求证:BE1⊥DC;
(Ⅱ)求证:DM∥平面BCE1
(Ⅲ)判断直线CD与ME1的位置关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=3sin(2x+$\frac{π}{4}$)(x∈R).
(1)求函数f(x)的最小正周期和初相;
(2)若f($\frac{α}{2}$)=$\frac{9}{5}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),求cosα的值.

查看答案和解析>>

科目: 来源: 题型:选择题

3.在某次义务教育检测中,某校的甲、乙另个班级各被抽到10名学生,他们问卷成绩的茎叶图如图所示,若甲班学生的平均成绩是84分,乙班学生成绩的中位数是85,那么x+y的值为(  )
A.4B.6C.7D.8

查看答案和解析>>

科目: 来源: 题型:填空题

2.在△ABC中,AC=2AB=2,BC=$\sqrt{3}$,P是△ABC内部的一点,若∠APB=∠BPC=∠CPA,则PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心为坐标原点,离心率e=$\frac{\sqrt{6}}{3}$,A1,A2,B1,B2是其四个顶点,且四边形A1B1A2B2的面积为4$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过椭圆C的右焦点F且与椭圆C相交于M,N两点的直线l,使得在直线x=3上可以找到一点B,满足△MNB为正三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知{an}的前n项和Sn,an>0且an2+2an=4Sn+3
(1)求{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

20.将8本书分给3个人,每人至少一本,请问有几种分法?

查看答案和解析>>

科目: 来源: 题型:选择题

19.将甲,乙等5位同学分别保送到北京大学,复旦大学,中国科技大学就读,则每所大学至少保送一人的不同保送的方法数共有(  )种.
A.240B.180C.150D.540

查看答案和解析>>

同步练习册答案