相关习题
 0  246780  246788  246794  246798  246804  246806  246810  246816  246818  246824  246830  246834  246836  246840  246846  246848  246854  246858  246860  246864  246866  246870  246872  246874  246875  246876  246878  246879  246880  246882  246884  246888  246890  246894  246896  246900  246906  246908  246914  246918  246920  246924  246930  246936  246938  246944  246948  246950  246956  246960  246966  246974  266669 

科目: 来源: 题型:选择题

17.某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用A原料3吨,B原料2吨;生产每吨乙种产品要用A原料1吨,B原料3吨.该工厂每天生产甲、乙两种产品的总量不少于2吨,且每天消耗的A原料不能超过10吨,B原料不能超过9吨.如果设每天甲种产品的产量为x吨,乙种产品的产量为y吨,则在坐标系xOy中,满足上述条件的x,y的可行域用阴影部分表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

16.若角β的终边上一点A(-5,m),且tanβ=-5,则m=25,并求β的其它三角函数值.思考:若tan(cosθ)cot(sinθ)>0,试指出θ所在象限,并指出$\frac{θ}{2}$所在象限.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,其中向量$\overrightarrow{a}$=($\sqrt{3}sinx$,cosx),$\overrightarrow{b}$=(cosx,-cosx),x∈R.
(1)写出函数f(x)的最小正周期及单调递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求此时函数f(x)的最大值,并指出x取何值时,f(x)取得最大值.
(3)将f(x)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位,再向上移动$\frac{1}{2}$个单位,得到g(x),若g(x)为奇函数,求φ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.将2n按如表的规律填在5列的数表中,设22015排在数表的第n行,第m列,则m+n=506
21222324
28272625
29210211212
216215214213

查看答案和解析>>

科目: 来源: 题型:解答题

13.方程sinx+$\sqrt{3}$cosx+a=0在(0,π)内有两个不同的解α、β,求:
(1)a的范围;
(2)α+β的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$(x∈R).
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[0,$\frac{π}{4}$]上的函数值的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}满足an+1=an-$\frac{1}{n(n+1)}$,a1=3,数列{bn}的前n项和Sn=-$\frac{1}{2}$n2-$\frac{401}{2}$n+1
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}•{b}_{n}}$,求数列{cn}的最小项.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知平面$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,n),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则n=(  )
A.4B.-4C.-1D.2

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知Sn为数列{an}的前n项和,2an-n=Sn,求数列{an}的通项公式2n-1.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(Ⅰ)求a的值;
(Ⅱ)已知结论:若函数f(x)=x-ln(x+a)在区间(m,n)内导数都存在,且m>-a,则存在x0∈(m,n),使得$f'({x_0})=\frac{f(n)-f(m)}{n-m}$.试用这个结论证明:若-a<x1<x2,设函数$g(x)=\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}(x-{x_1})+f({x_1})$,则对任意x∈(x1,x2),都有f(x)<g(x);
(Ⅲ)若et+n≥1+n对任意的正整数n都成立(其中e为自然对数的底),求实数t的最小值.

查看答案和解析>>

同步练习册答案