相关习题
 0  246785  246793  246799  246803  246809  246811  246815  246821  246823  246829  246835  246839  246841  246845  246851  246853  246859  246863  246865  246869  246871  246875  246877  246879  246880  246881  246883  246884  246885  246887  246889  246893  246895  246899  246901  246905  246911  246913  246919  246923  246925  246929  246935  246941  246943  246949  246953  246955  246961  246965  246971  246979  266669 

科目: 来源: 题型:填空题

7.已知集合A={0,1,a},B={0,3,3a},若A∩B={0,3},则A∪B={0,1,3,9}.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow b=(\sqrt{3},-1)$,则|2$\overrightarrow a-\overrightarrow b|$的最大值,最小值分别是(  )
A.4,0B.$4\sqrt{2}$,4C.$4\sqrt{2}$,0D.16,0

查看答案和解析>>

科目: 来源: 题型:选择题

5.若2sin2($\frac{π}{4}$+$\frac{x}{2}$)=1-cos(π-x),则sin2x=(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知集合A={x∈Z||x-1|<3},B={x|-x2-2x+3>0},则A∩B=(  )
A.(-2,1)B.(1,4)C.{-1,0}D.{2,3}

查看答案和解析>>

科目: 来源: 题型:填空题

3.给出下列四个结论:
(1)如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是$\frac{{\sqrt{3}}}{2}$;
(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为$\hat y=0.85x-85,71$,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
(3)若f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),则函数f(x)的图象关于x=1对称;
(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21.
其中正确结论的序号为(2)(3)(4).

查看答案和解析>>

科目: 来源: 题型:填空题

2.5位同学排队,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在排头,则排法种数为60.

查看答案和解析>>

科目: 来源: 题型:选择题

1.复数$\frac{3+i}{1-3i}$+$\frac{1}{i}$等于(  )
A.3-iB.-2iC.2iD.0

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设点M(2,-1),曲线C1与曲线C2交于A,B,求|MA|•|MB|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且$BE=\frac{1}{3}B{C_1}$.
(1)求证:GE∥侧面AA1B1B;
(2)求三棱锥E-ABC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案