相关习题
 0  246820  246828  246834  246838  246844  246846  246850  246856  246858  246864  246870  246874  246876  246880  246886  246888  246894  246898  246900  246904  246906  246910  246912  246914  246915  246916  246918  246919  246920  246922  246924  246928  246930  246934  246936  246940  246946  246948  246954  246958  246960  246964  246970  246976  246978  246984  246988  246990  246996  247000  247006  247014  266669 

科目: 来源: 题型:解答题

13.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角θ的正弦值为$\frac{{2\sqrt{7}}}{7}$?若存在,请说明点Q位置;
若不存在,请说明不存在的理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为$\frac{1}{3}$,$\frac{1}{2}$;租用2小时以上且不超过3小时的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知单位向量$\overrightarrow i,\overrightarrow j,\overrightarrow k$两两的夹角均为θ(0<θ<π,且θ≠$\frac{π}{2}$),若空间向量$\overrightarrow a$满足$\overrightarrow a=x\overrightarrow i+y\overrightarrow j+z\overrightarrow k(x,y,z∈R)$,则有序实数组(x,y,z)称为向量$\overrightarrow a$在“仿射”坐标系O-xyz(O为坐标原点)下的“仿射”坐标,记作$\overrightarrow a={(x,y,z)_θ}$有下列命题:
①已知$\overrightarrow a={(1,3,-2)_θ},\overrightarrow b={(4,0,2)_θ}$,则$\overrightarrow a$•$\overrightarrow b$=0;
②已知$\overrightarrow a={(x,y,0)_{\frac{π}{3}}},\overrightarrow b={(0,0,z)_{_{\frac{π}{3}}}}$其中xyz≠0,则当且仅当x=y时,向量$\overrightarrow a$,$\overrightarrow b$的夹角取得最小值;
③已知$\overrightarrow a={({x_1},{y_1},{z_1})_θ},\overrightarrow b={({x_2},{y_2},{z_2})_θ},则\overrightarrow a+\overrightarrow b={({x_1}+{x_2},{y_1}+{y_2},{z_1}+{z_2})_θ}$;
④已知$\overrightarrow{OA}={(1,0,0)_{\frac{π}{3}}},\overrightarrow{OB}={(0,1,0)_{\frac{π}{3}}},\overrightarrow{OC}={(0,0,1)_{\frac{π}{3}}}$,则三棱锥O-ABC的表面积S=$\sqrt{2}$,其中真命题有②③(写出所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

10.设随机变量ξ~N(μ,σ2),且P(ξ<-1)=P(ξ>2)=0.3,则P(ξ<2μ+1)=(  )
A.0.4B.0.5C.0.6D.0.7

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=mlnx-x2+(2m-1)x,(m∈R).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设m>0,证明:当0<x<m时,f(m+x)>f(m-x);
(Ⅲ)若函数f(x)的图象与x轴交于A、B两点,线段AB的中点的横坐标为x0,f′(x)为函数f(x)的导函数,证明f′(x0)<0.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,点(1,$\frac{\sqrt{2}}{2}$)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F1的直线与椭圆相较于P、Q两点,设△PQF2内切圆的面积为S,求S最大时圆的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在等腰梯形CDFE中,A、B分别为底边DE,CE的中点.AD=2AB=2BC=2.沿AE将AEF折起,使二面角F-AE-C为直二面角,连接CF、DF.

(Ⅰ)证明:平面ACF⊥平面AEF;
(Ⅱ)求平面AEF与平面CDF所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某市教育局邀请教育专家深入该市多所中小学,开展听课、访谈及随堂检测等活动.他们把收集到的180节课分为三类课堂教学模式:教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式.A、B、C三类课的节数比例为3:2:1
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式,根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
高效非高效统计
新课堂模式603090
传统课堂模式405090
统计10080180
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(Ⅱ)教育专家采用分层抽样的方法从收集到的180节课中选出18节课作为样本进行研究,并从样本的B模式和C模式课堂中随机抽取3节课.
①求至少有一节为C模式课堂的概率;
②设随机抽取的3节课中含有C模式课堂的节数为X,求X的分布列和数学期望.
参考临界值表:
P(K2≧K00.100.050.0250.0100.0050.001
K02.7063.8415.0246.6357.89710.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n =a +b +c +d

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在△ABC中,BC边上的中线为AD.
(1)若AD=BD=2,AB=3,求ABC的面积;
(2)若∠ABC=30°,∠ACB=45°,求tan∠BAD的值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知定义在区间[a,a+2]上的奇函数y=f(x),当0<x≤a+2时,f(x)=$\frac{1}{4}$(x-1).若方程f(x)=x3+cx恰有三个不相等的实数根,则实数c的取值范围为$c=-\frac{1}{2}$或c<-1.

查看答案和解析>>

同步练习册答案