相关习题
 0  246873  246881  246887  246891  246897  246899  246903  246909  246911  246917  246923  246927  246929  246933  246939  246941  246947  246951  246953  246957  246959  246963  246965  246967  246968  246969  246971  246972  246973  246975  246977  246981  246983  246987  246989  246993  246999  247001  247007  247011  247013  247017  247023  247029  247031  247037  247041  247043  247049  247053  247059  247067  266669 

科目: 来源: 题型:选择题

17.设i是虚数单位,则复数1-2i+3i2-4i3等于(  )
A.-2-6iB.-2+2iC.4+2iD.4-6i

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=lnx.
(1)方程f(x+a)=x有且只有一个实数解,求a的值;
(2)若函数$g(x)=f(x)+\frac{1}{2}{x^2}-mx(m≥\frac{5}{2})$的极值点x1,x2(x1<x2)恰好是函数h(x)=f(x)-cx2-bx的零点,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2),M?N=x1x2+y1y2则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M
其中真命题的序号为①③④(把真命题的序号全部写出)

查看答案和解析>>

科目: 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=-$\sqrt{3}$x,离心率为e,则$\frac{{a}^{2}+{e}^{2}}{b}$的最小值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.以直角坐标系的原点为极点x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.则曲线C1:ρ2-2ρcosθ-1=0上的点到曲线C2:$\left\{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}\right.$(t为参数)上的点的最短距离为(  )
A.$2\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知i为虚数单位,复数z满足1+i+(1+i)2z=(1-i)2,则复数z的虚部为(  )
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知f(x)的定义域为[-π,π],且f(x)为偶函数,且当x∈[0,π]时,f(x)=2sin(x+$\frac{π}{3}$).
(1)求f(x)的解析式及f(x)的单调增区间;
(2)若[f(x)]2-$\sqrt{3}$f(x)=0,求x的所有可能取值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.设O为△ABC所在平面上一点,则下列说法中正确的有①③④(填上正确命题的序号)
①若$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则O为△ABC的垂心;
②若$|\overrightarrow{OA}{|}^{2}+|\overrightarrow{BC}{|}^{2}$=$|\overrightarrow{OB}{|}^{2}+|\overrightarrow{CA}{|}^{2}$=$\overrightarrow{|OC}{|}^{2}+|\overrightarrow{AB}{|}^{2}$,则点O是△ABC的内心;
③若O在△ABC内部,且3$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,则$\frac{{S}_{△ABC}}{{S}_{△OBC}}$=$\frac{5}{3}$;
④若O在△ABC内部,且$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,则S△ABO:S△BCO:S△ACO=3:1;2.

查看答案和解析>>

科目: 来源: 题型:填空题

9.设全集U=R,A={x|$\frac{x-2}{x+1}$<0},B={y=cosx,x∈A},则A∩B=(cos2,1].

查看答案和解析>>

科目: 来源: 题型:选择题

8.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有(  )个.
A.78B.102C.114D.120

查看答案和解析>>

同步练习册答案