相关习题
 0  246906  246914  246920  246924  246930  246932  246936  246942  246944  246950  246956  246960  246962  246966  246972  246974  246980  246984  246986  246990  246992  246996  246998  247000  247001  247002  247004  247005  247006  247008  247010  247014  247016  247020  247022  247026  247032  247034  247040  247044  247046  247050  247056  247062  247064  247070  247074  247076  247082  247086  247092  247100  266669 

科目: 来源: 题型:解答题

11.如图所示,已知椭圆C的方程为$\frac{x^2}{2}+{y^2}$=1,F1,F2分别是椭圆C的左、右焦点,直线AB:y=kx+m(k<0)与椭圆C交于不同的A,B两点.
(Ⅰ) 若k=-1,m=$\sqrt{2}$,点P在直线AB上求|PF1|+|PF2|的最小值;
(Ⅱ) 若以线段AB为直径的圆经过点F2,且原点O到直线AB的距离为$\frac{{2\sqrt{5}}}{5}$.
(1)求直线AB的方程;
(2)在椭圆C上求点Q的坐标,使得△ABQ的面积最大.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn+an=4,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=2n-17(n∈N*),记cn=log2an-bn.求数列{cn}的前n项和Tn的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知区域D:$\left\{\begin{array}{l}y≥2\\ x+y-2≥0\\ x-y-1≤0.\end{array}\right.$若圆C:(x-a)2+(y-2)2=2与区域D有公共点,则实数a的取值范围是(  )
A.[-1,5]B.[-2,2]C.[-2,5]D.[-1,2]

查看答案和解析>>

科目: 来源: 题型:选择题

8.在给出如下三个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;下列判断正确的是(  )
A.假  真B.假  假C.真  假D.真  真

查看答案和解析>>

科目: 来源: 题型:选择题

7.设i是虚数单位,若z=cosθ+isinθ且对应的点位于复平面的第二象限,则θ位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:选择题

6.设全集U是实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1},则(∁UM)∩N是(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目: 来源: 题型:解答题

5.某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数0-100100-200200-300300-400400以上
学生频数304020100
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,以坐标原点O为圆心,椭圆C的短半轴长为半径的圆与直线y=$\sqrt{3}$x+2相切.
(1)求椭圆C的方程;
(2)设P,Q,T为椭圆C上不同的三点,且P,Q两点关于x轴对称,若直线PT,QT分别与x轴交于点M.N.求证:|OM|•|ON|为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在直角坐标平面内,已知点A(1,0),B(-1,0),动点P满足|PA|+|PB|=4.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点($\frac{1}{2}$,0)作直线l与轨迹C交于E、F两点,线段EF的中点为M,轨迹C与x轴正半轴的交点为N,求直线MN的斜率k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知直线l:x=-2,圆C:x2+y2=4,动圆P恒与l相切,动圆P与圆C相交于A、B两点,且AB恒为圆C的直径,动圆P圆心的轨迹构成曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)已知Q(-1,0)、F(1,0),过Q的直线m与曲线E交于M、N两点,设直线FM,FN的倾斜角分别为θ1、θ2,问θ12是否为定值,如果是定值,求出该定值,如果不是,请说明理由.

查看答案和解析>>

同步练习册答案