相关习题
 0  246919  246927  246933  246937  246943  246945  246949  246955  246957  246963  246969  246973  246975  246979  246985  246987  246993  246997  246999  247003  247005  247009  247011  247013  247014  247015  247017  247018  247019  247021  247023  247027  247029  247033  247035  247039  247045  247047  247053  247057  247059  247063  247069  247075  247077  247083  247087  247089  247095  247099  247105  247113  266669 

科目: 来源: 题型:选择题

1.已知i是虚数单位,则复数z=i2015的虚部是(  )
A.0B.-1C.1D.-i

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知I为全集,且B∩(∁IA)=B.求A∩B=(  )
A.AB.BC.IBD.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知$\overrightarrow{BA}•\overrightarrow{BC}$=2,tanB=2$\sqrt{2}$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求cos(B-C)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在极坐标系中,设圆C1:ρ=4cosθ 与直线l:θ=$\frac{π}{4}$ (ρ∈R)交于A,B两点.
(Ⅰ)求以AB为直径的圆C2的极坐标方程;
(Ⅱ)在圆C1任取一点M,在圆C2上任取一点N,求|MN|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.函数f(x)=$\left\{\begin{array}{l}aln(x+1),x≥0\\ \frac{1}{3}{x^3}-ax,x<0\end{array}$,g(x)=ex-1.
(Ⅰ)当a>0时,求函数f(x)的单调区间和极大值;
(Ⅱ)当a∈R时,讨论方程f(x)=g(x)解得个数;
(Ⅲ)求证:$\frac{1095}{1000}$<$\root{10}{e}$<$\frac{3000}{2699}$(参考数据:ln1.1≈0.0953).

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知点A(0,2),抛物线C:y2=ax,(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:$\sqrt{5}$,则a的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目: 来源: 题型:填空题

15.对于任意实数x,记[x]表示不超过x的最大整数,{x}=x-[x],<x>表示不小于x的最小整数,若x1,x2,…xm(0≤x1<x2<…<xm≤n+1是区间[0,n+1]中满足方程[x]•{x}•<x>=1的一切实数,则x1+x2+…+xm的值是$\frac{n(n+1)}{2}$+$\frac{n}{n+1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,已知 AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(I)求证:AC⊥平面BCE;
(II)求三棱锥E-BCF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某单位组织职工开展构建绿色家园活动,在今年3月份参加义务植树活动的职工中,随机抽取M名职工为样本,得到这些职工植树的株数,根据此数据作出了频数与频率统计表和频率分布直方图如图:
(1)求出表中M,p及图中a的值;
(2)单位决定对参加植树的职工进行表彰,对植树株数在[25,30)区间的职工发放价值800元的奖品,对植树株数在[20,25)区间的职工发放价值600元的奖品,对植树株数在[15,20)区间的职工发放价值400元的奖品,对植树株数在[10,15)区间的职工发放价值200元的奖品,在所取样本中,任意取出2人,并设X为此二人所获得奖品价值之差的绝对值,求X的分布列与数学期望E(X).
分组频数频率
[10,15)50.25
[15,20)12n
[20,25)mp
[25,30)10.05
合计M1

查看答案和解析>>

科目: 来源: 题型:解答题

12.随着人们低碳出行意识的提高,低碳节能小排量(小于或等于1.3L)汽车阅历越受私家购买者青睐,工信部为比较A,B两种小排量汽车的100km综合工况油耗,各随机选100辆汽车进行综合工况油耗检测,表1和表2分别是汽车A额B的综合工况检测的结果.
表1:A种汽车综合工况油耗的频数分布表
100km综合工况油耗(L)[5.2,5.4)[5.4,5.6)[5.6,5.8)[5.8,6.0]
频数10204030
表2:B种汽车综合工况油耗的频数分布表
100km综合工况油耗(L)[5.2,5.4)[5.2,5.4)[5.6,5.8)[5.8,6.0)[6.0,6.2]
频数1530202510
(1)完成下面频数分布直观图;

(2)据此样本分析,估计1000辆A种汽车都行驶100km的综合工况油耗总量约为多少(单位:L)(同一组中的数据用该区间的中点值做代表).
(3)完成下面2×2列联表,并回答是否有95%的把握认为“A中汽车与B中汽车的100km综合工况油耗由差异”:

附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$,其中,n=a+b+c+d.
P(K2≥k00.1000.050.025
k02.7063.8415.024

查看答案和解析>>

同步练习册答案