相关习题
 0  246968  246976  246982  246986  246992  246994  246998  247004  247006  247012  247018  247022  247024  247028  247034  247036  247042  247046  247048  247052  247054  247058  247060  247062  247063  247064  247066  247067  247068  247070  247072  247076  247078  247082  247084  247088  247094  247096  247102  247106  247108  247112  247118  247124  247126  247132  247136  247138  247144  247148  247154  247162  266669 

科目: 来源: 题型:解答题

15.已知点P为y轴上的动点,点M为x轴上的动点.点F(1,0)为定点,且满足$\overrightarrow{PN}$+$\frac{1}{2}$$\overrightarrow{NM}$=$\overrightarrow{0}$,$\overrightarrow{PM}$•$\overrightarrow{PF}$=0.
(Ⅰ)求动点N的轨迹E的方程.
(Ⅱ)A,B是E上的两个动点,l为AB的中垂线,求当l的斜率为2时,l在y轴上的截距m的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知点B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点,F1,F2分别是椭圆的左右焦点,直线BF1,BF2与椭圆分别交于E,F两点,△BEF为等边三角形.
(1)求椭圆C的离心率;
(2)已知点(1,$\frac{3}{2}$)在椭圆C上,且直线l:y=kx+m与椭圆C交于M、N两点,若直线F1M,F2N的倾斜角分别为α,β,且α+β=$\frac{π}{2}$,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

13.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρsin(θ+\frac{π}{4})=4\sqrt{2}$.设P为曲线C1上的动点,则点P到C2上点的距离的最小值为3$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知结论:“在△ABC中,各边和它所对角的正弦比相等,即$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$”,若把该结论推广到空间,则有结论:“在三棱锥A-BCD中,侧棱AB与平面ACD、平面BCD所成的角为α、β,则有(  )”
A.$\frac{BC}{sinα}=\frac{AD}{sinβ}$B.$\frac{AD}{sinα}=\frac{BC}{sinβ}$
C.$\frac{{{S_{△BCD}}}}{sinα}=\frac{{{S_{△ACD}}}}{sinβ}$D.$\frac{{{S_{△ACD}}}}{sinα}=\frac{{{S_{△BCD}}}}{sinβ}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1、k2、k3,那么k1:k2:k3(  )
A.$\frac{1}{4}:\frac{1}{6}:\frac{1}{π}$B.$\frac{π}{6}:\frac{π}{4}$:2C.2:3:2πD.$\frac{π}{6}:\frac{π}{4}$:1

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,已知定点A(1,0),点B是定直线l:x=-1上的动点,∠BOA的角平分线交AB于C.
(1)求点C的轨迹方程;
(2)若E(-2,0),F(2,0),G(-1,$\frac{1}{2}$),(1)中轨迹上是否存在一点Q,直线EQ,FQ与y轴交点分别为M,N,使得∠MGN是直角?如果存在,求点Q坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,右焦点为F,右顶点为A,P为直线x=$\frac{5}{4}$a上的任意一点,且($\overrightarrow{PF}$+$\overrightarrow{PA}$)•$\overrightarrow{AF}$=2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点P所作椭圆C的切线l与坐标轴不平行,切点为Q,且交y轴于点T,试确定x轴上是否存在定点M,使得sin∠OTQ=2|cos∠TQM|.若存在,请求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知d为常数,p:对于任意n∈N*,an+2-an+1=d;q:数列 {an}是公差为d的等差数列,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知平面上的动点P(x,y)及两定点M(-2,0)、N(2,0),直线PM、PN的斜率之积为定值$-\frac{3}{4}$,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q(x0,y0)(y0>0)是曲线C上一动点,过Q作两条直线l1,l2分别交曲线C于A,B两点,直线l1与l2的斜率互为相反数.试问:直线AB的斜率与曲线C在Q点处的切线的斜率之和是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,以椭圆的短半轴为半径的圆与直线x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)过椭圆的右焦点F的直线l1与椭圆交于A、B,过F与直线l1垂直的直线l2与椭圆交于C、D,与直线l3:x=4交于P;
①求证:直线PA、PF、PB的斜率kPA,kPF,kPB成等差数列;
②是否存在常数λ使得|AB|+|CD|=λ|AB|•|CD|成立,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案