相关习题
 0  246973  246981  246987  246991  246997  246999  247003  247009  247011  247017  247023  247027  247029  247033  247039  247041  247047  247051  247053  247057  247059  247063  247065  247067  247068  247069  247071  247072  247073  247075  247077  247081  247083  247087  247089  247093  247099  247101  247107  247111  247113  247117  247123  247129  247131  247137  247141  247143  247149  247153  247159  247167  266669 

科目: 来源: 题型:解答题

13.已知椭圆F:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{3}$,左焦点为F1,点F1到直线ax+by=0的距离为$\frac{3\sqrt{17}}{17}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线角椭圆于P,Q两点,求证:|PF1|+|QF1|-|PQ|为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设函数f(x)=$\frac{1}{3}$x3-ax(a>0),g(x)=bx2+2b-1,且a=1-2b.
(1)若函数y=f(x)在区间[2,+∞)内为增函数,求实数a的取值范围;
(2)当a=1时,求函数h(x)=f(x)+g(x)在区间[0,3]内的最值;
(3)当a=3时,求函数h(x)=f(x)+g(x)的极值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知动点P(x,y)到直线x=4的距离是它到点Q(1,0)的距离的2倍
(1)求动点P的轨迹D的方程;
(2)若点A是曲线D与x轴负半轴的交点,C是曲线上的另一点,直线AC的垂直平分线是l,直线l与y轴的交点是N(0,y0),且满足NA⊥NC,求点C的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

10.若实数x,y满足不等式组$\left\{\begin{array}{l}y≤5\\ 2x-y+3≤0\\ x+y-1≥0\end{array}\right.$,则z=x+2y的最大值是(  )
A.10B.11C.13D.14

查看答案和解析>>

科目: 来源: 题型:解答题

9.设点P为圆O:x2+y2=4上的一动点,点Q为点P在x轴上的射影,动点M满足:$\overrightarrow{MQ}$=$\frac{1}{2}$$\overrightarrow{PQ}$.
(1)求动点M的轨迹E的方程;
(2)过点F(-$\sqrt{3}$,0)作直线l交圆O于A、B两点,交(1)中的轨迹E于点C、D两点,问:是否存在这样的直线l,使得$\sqrt{|AF|•|BF|}$=$\frac{|CF|+|DF|}{2}$成立?若存在,求出所有的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

8.阅读如图所示的程序框图,若输入a的值为二项($\sqrt{x}$+$\frac{1}{19{x}^{4}}$)9展开式的常数项,则输出的k值为9.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知动圆Q过定点F(0,-1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.
(Ⅰ)求动圆圆心Q的轨迹M的标准方程和椭圆N的标准方程;
(Ⅱ)若过F的动直线m交椭圆N于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2,试求Z的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知数列{an}满足a1=a,an+1=1+$\frac{1}{a_n}$,若对任意的自然数n≥4,恒有$\frac{3}{2}$<an<2,则a的取值范围为(0,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x轴的直线被椭圆C所截得的线段长度为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点 P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点 M,使得$\overrightarrow{{M}{P}}•\overrightarrow{{M}Q}$为定值?若存在,求出点 M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(1)求直线BE和平面ABB1A1所成角θ的正弦值;
(2)证明:B1F∥平面A1BE.

查看答案和解析>>

同步练习册答案