相关习题
 0  246979  246987  246993  246997  247003  247005  247009  247015  247017  247023  247029  247033  247035  247039  247045  247047  247053  247057  247059  247063  247065  247069  247071  247073  247074  247075  247077  247078  247079  247081  247083  247087  247089  247093  247095  247099  247105  247107  247113  247117  247119  247123  247129  247135  247137  247143  247147  247149  247155  247159  247165  247173  266669 

科目: 来源: 题型:解答题

13.已知函数f(x)=xex+ax2-x,(a∈R,e为自然对数的底数,且e=2.718…).
(Ⅰ)若a=-$\frac{1}{2}$,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对于x≥0时,恒有f′(x)-f(x)≥(4a+1)x成立,求实数a的取值范围;
(Ⅲ)当n∈N*时,证明:$\frac{e-{e}^{n+1}}{1-e}≥\frac{n(n+3)}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=ax3+2x-a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设xn是函数fn(x)=nx3+2x-n的零点.
(i)证明:n≥2时存在唯一xn且${x}_{n}∈(\frac{n}{n+1},1)$;
(i i)若bn=(1-xn)(1-xn+1),记Sn=b1+b2+…+bn,证明:Sn<1.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,点$B(0,\sqrt{3})$为短轴的一个端点,∠OF2B=60°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过右焦点F2,且斜率为k(k≠0)的直线l与椭圆C相交于D,E两点,A为椭圆的右顶点,直线AE,AD分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′.试问k•k′是否为定值?若为定值,求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

10.记数列{an}的前n项和为Sn,且Sn=$\int_0^n$(2ax+b)dx(a,b常数).若不等式an2+$\frac{{S_{n}^2}}{{n{^2}}}$≥ma12对任意的数列{an}及任意正整数n都成立,则实数m的取值范围为(  )
A.$(-∞,\frac{1}{2}]$B.$[{\frac{1}{5},\frac{1}{2}}]$C.$[{\frac{1}{5},+∞})$D.$(-∞,\frac{1}{5}]$

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系中,已知椭圆C:$\frac{x^2}{24}+\frac{{y{\;}^2}}{12}$=1,设R(x0,y0)是椭圆C上任一点,从原点O向圆R:(x-x02+(y-y02=8作两条切线,切点分别为P,Q.
(1)若直线OP,OQ互相垂直,且R在第一象限,求圆R的方程;
(2)若直线OP,OQ的斜率都存在,并记为k1,k2,求证:2k1k2+1=0.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,上顶点为A,过A于AF2垂直的直线交x轴于Q点,且$\overrightarrow{Q{F}_{2}}$=2$\overrightarrow{Q{F}_{1}}$.
(1)求椭圆C的离心率;
(2)若过A、Q,F1三点的圆恰好与直线x+$\sqrt{3}$y+10=0相切,求椭圆C的方程;
(3)过F1的直线l与(2)中椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,长方体ABCD-A1B1C1D1的AA1=1,底面ABCD的周长为4.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求直线BA1与平面A1CD所成角;
(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知双曲线与椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$有相同的焦点,且以$x+\sqrt{2}y=0$为其一条渐近线,则双曲线方程为$\frac{x^2}{4}-\frac{y^2}{2}=1$,过其右焦点且长为4的弦有3条.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆Q:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右顶点P(2,0),离心率为$\frac{\sqrt{3}}{2}$,O为坐标原点.
(1)求椭圆O的方程;
(2)设A、B、M是椭圆上的三点,$\overrightarrow{OM}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,点N为线段AB的中点,C、D两点的坐标分别为(-$\frac{\sqrt{6}}{2}$,0)、($\frac{\sqrt{6}}{2}$,0),求证:|NC|+|ND|=2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足$\overrightarrow{OC}$=α$\overrightarrow{OA}$+β$\overrightarrow{OB}$,其中α,β∈R,且α-2β=1.
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0)交于两点M,N,且以MN为直径的圆过原点,求证:$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$为定值;
(3)在(2)的条件下,若椭圆的离心率不大于$\frac{\sqrt{3}}{2}$,求椭圆长轴长的取值范围.

查看答案和解析>>

同步练习册答案