相关习题
 0  247064  247072  247078  247082  247088  247090  247094  247100  247102  247108  247114  247118  247120  247124  247130  247132  247138  247142  247144  247148  247150  247154  247156  247158  247159  247160  247162  247163  247164  247166  247168  247172  247174  247178  247180  247184  247190  247192  247198  247202  247204  247208  247214  247220  247222  247228  247232  247234  247240  247244  247250  247258  266669 

科目: 来源: 题型:解答题

2.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x02+2ax0+2-a=0;若命题¬(p∧q)是假命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.由曲线y=sinx,y=cosx与直线x=0,x=$\frac{π}{2}$所围成的平面图形(下图中的阴影部分)的面积是2$\sqrt{2}$-2.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知命题“彐x∈R,2x2+ax≤$\frac{1}{2}$”是假命题,则a的取值范围是(-2,2).

查看答案和解析>>

科目: 来源: 题型:选择题

19.在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,AA1=2,则异面直线A1B与B1C所成角的余弦值为(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{30}}{10}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则向量$\overrightarrow{AD}$的坐标为(  )
A.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-1,$\frac{\sqrt{3}}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)D.($\frac{\sqrt{3}}{2}$,1,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目: 来源: 题型:选择题

17.过抛物线y2=4x的焦点作直线l,交抛物线于A、B两点.若线段AB的中点的横坐标为3,则AB的长度为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知x∈R,命题p:x>0,命题q:x+sinx>0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

15.方程mx2+ny2=1不可能表示的曲线为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=x2-1,g(x)=|x-a|.
(1)当a=1时,求F(x)=f(x)-g(x)的零点;
(2)若方程|f(x)|=g(x)有三个不同的实数解,求a的值;
(3)求G(x)=f(x)+g(x)在[-2,2]上的最小值h(a).

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知定义在R上的函数f(x)=ln(e2x+1)+ax(a∈R)是偶函数.
(1)求实数a的值;
(2)判断f(x)在[0,+∞)上的单调性,并用定义法证明;
(3)若f(x2+$\frac{1}{{x}^{2}}$)>f(mx+$\frac{m}{x}$)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案