相关习题
 0  247091  247099  247105  247109  247115  247117  247121  247127  247129  247135  247141  247145  247147  247151  247157  247159  247165  247169  247171  247175  247177  247181  247183  247185  247186  247187  247189  247190  247191  247193  247195  247199  247201  247205  247207  247211  247217  247219  247225  247229  247231  247235  247241  247247  247249  247255  247259  247261  247267  247271  247277  247285  266669 

科目: 来源: 题型:解答题

5.已知f(x)=[x2-(a+3)x+b]ex,其中a,b∈R.
(1)当a=-3,b=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x=1是函数f(x)的一个极值点,求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:填空题

4.下面四个命题:
①有一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然错误,是因为大前提错误;
②在两个变量y与x的回归模型中,分别选择了四个不同的模型,它们的相关指数R2分别为:(1)0.976;(2)0.776,(3)0.076;(4)0.351,其中拟合效果最好的模型是(1);
③设a,b,c∈(-∞,0),则a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$至少有一个不大于-2;
④如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值是5.
其中所有正确命题的序号是②③.

查看答案和解析>>

科目: 来源: 题型:选择题

3.下列表述正确的是(  )
①归纳推理是由部分到整体的推理;
②归纳推理是由一般到一般的推理;
③演绎推理是由一般到特殊的推理;
④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
A.①②③B.②③④C.①③⑤D.②④⑤

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知动点P(x,y)及两定点A(-3,0)和B(3,0),若$\frac{|PA|}{|PB|}$=2,(|PA|、|PB|分别表示点P与点A、B的距离)
(1)求动点P的轨迹Γ方程.
(2)动点Q在直线y-x-1=0上,且QM、QN是轨迹Γ的两条切线,M、N是切点,C是轨迹Γ中心,求四边形OMCN面积的最小值及此时直线MN的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知二次函数f(x)=x2-kx+k(k>0,x∈R),不等式f(x)≤0解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N).
(1)求数列{an}项公式;
(2)设bn=$\frac{{a}_{n}}{{3}_{n}}$,求数列{bn}项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列的变号数,若cn=1-$\frac{k}{{a}_{n}}$(n∈N*),求数列{cn}的变号数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知x=-1是函数f(x)=x3-3x2-mx+10(m∈R)的一个极值点.
(2)求m的值;
(2)求函数f(x)在[-4,3]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知a>0,且a≠1,f(x)=logax,数列{an}是首项、公比均为a2的等比数列,bn=f(an).
(1)求证:数列{bn}是等差数列;
(2)设a=$\sqrt{2}$,cn=bn•an,试求数列{cn}前n项和Sn
(3)令dn=an•lgan,是否存在实数a∈(0,1),使得数列{dn}为递增数列.若存在,求出实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,线段AB长度为2,以AB为直径作半圆O,又以半圆O的一条弦AC为边作正方形ACDE,设△OED的面积为S,∠CAB=α.
(1)试将S表示成关于α的函数;
(2)求S的最大值,并求S取得最大值时α的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|}&{0<x<3}\\{sin\frac{πx}{6}}&{3≤x≤15}\end{array}\right.$,若直线y=m(m∈R)与函数f(x)的图象有四个交点,且交点的横坐标从小到大依次为a,b,c,d,则$\frac{(c-1)(d-1)}{ab}$的取值范围是(28,55).

查看答案和解析>>

科目: 来源: 题型:解答题

3.设向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$),$\overrightarrow{c}$=(cosx,sinx),x∈[0,$\frac{π}{2}$]
(1)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值
(2)设函数f(x)=$\overrightarrow{b}$•$\overrightarrow{c}$,求f(x)的最大值.

查看答案和解析>>

同步练习册答案