相关习题
 0  247161  247169  247175  247179  247185  247187  247191  247197  247199  247205  247211  247215  247217  247221  247227  247229  247235  247239  247241  247245  247247  247251  247253  247255  247256  247257  247259  247260  247261  247263  247265  247269  247271  247275  247277  247281  247287  247289  247295  247299  247301  247305  247311  247317  247319  247325  247329  247331  247337  247341  247347  247355  266669 

科目: 来源: 题型:解答题

9.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C相交于A、B两点,则|OA|2+|OB|2(O为坐标原点)的最小值为(  )
A.4B.8C.10D.12

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3),Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.若半径为r的圆C:x2+y2+Dx+Ey+F=0的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F>0.
(1)求F的范围;
(2)求证:d2-r2为定值;
(3)是否存在定圆M,使得圆M既与直线l相切又与圆C相离?若存在,请求出定圆M的方程,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设斜率为k的直线l与C相交于A,B两点,记△AOB面积的最大值为Sk,证明:S1=S2

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1(-c,0),F2(c,0),M为椭圆上的一点,且满足∠F1MF2=$\frac{π}{3}$.
(1)求椭圆离心率的取值范围;
(2)当椭圆的离心率e取得最小值时,点N$(0,3\sqrt{3})$到椭圆上的点的最远距离为4$\sqrt{3}$,求此时椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

2.变量X与Y相对应的一组数据为:(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5); 变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,是则r1与r2的大小关系是r2<r1

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=-x3+3x2+ax+b(a,b∈R),f′(x)是函数f(x)的导函数,且f′(-1)=0
(1)求f(x)的单调区间;
(2)求函数f(x)在[-2,4]上的最值.

查看答案和解析>>

同步练习册答案