相关习题
 0  247164  247172  247178  247182  247188  247190  247194  247200  247202  247208  247214  247218  247220  247224  247230  247232  247238  247242  247244  247248  247250  247254  247256  247258  247259  247260  247262  247263  247264  247266  247268  247272  247274  247278  247280  247284  247290  247292  247298  247302  247304  247308  247314  247320  247322  247328  247332  247334  247340  247344  247350  247358  266669 

科目: 来源: 题型:选择题

19.口袋内放有大小相同的2个红球和1个白球,有放回的每次摸取一个球,定义数列{an}为an=$\left\{\begin{array}{l}{-1,第n次摸到红球}\\{1,第n次摸到白球}\end{array}\right.$,如果Sn为数列{an}的前n项和,那么S7=-3的概率为(  )
A.C${\;}_{7}^{1}$×$\frac{1}{3}$×($\frac{2}{3}$)B.C${\;}_{7}^{2}$×($\frac{1}{3}$)2×($\frac{2}{3}$)5C.C${\;}_{7}^{3}$×($\frac{1}{3}$)3×($\frac{2}{3}$)D.C${\;}_{7}^{4}$×($\frac{1}{3}$)4×($\frac{2}{3}$)

查看答案和解析>>

科目: 来源: 题型:选择题

18.箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为(  )
A.$\frac{3}{5}×\frac{1}{4}$B.($\frac{5}{9}$)3×$\frac{4}{9}$C.4×($\frac{5}{9}$)3×$\frac{4}{9}$D.4×($\frac{4}{9}$)3×$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数$f(x)=|x|-\frac{2}{x-1}$.
(1)试讨论函数f(x)在区间(-∞,0)上的单调性;
(2)若当x∈(b,a)(b>0)时,函数y=loga(f(x))(a>0且a≠1)的取值范围恰为(-∞,0),求实数a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$),记∠COA=α.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数y=sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$)是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目: 来源: 题型:填空题

14.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得lny=lnf(x)φ(x)=φ(x)lnf(x),两边对x求导数,得$\frac{y′}{y}$=φ′(x)lnf(x)+φ(x)$\frac{f′(x)}{f(x)}$,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)$\frac{f′(x)}{f(x)}$],运用此方法可以求得函数y=xx(x>0)在(1,1)处的切线方程是y=x.

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,由曲线y=x2和直线y=t2(0<t<1),x=1,x=0所围成的图形(阴影部分)的面积的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点p(m,-2)到焦点的距离为4,则m的值为(  )
A.6或-6B.2或-2C.4或-4D.12或-12

查看答案和解析>>

科目: 来源: 题型:选择题

11.若命题p:x=4,命题q:x2=16,则p是q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

10.△ABC中内角A、B、C的对边分别为a、b、c,已知2a=$\sqrt{3}$c,cosC=$\frac{\sqrt{3}}{4}$.
(1)求sinA的值;
(2)若D为AC中点,且△ABD的面积为$\frac{\sqrt{39}}{8}$,求BD的长.

查看答案和解析>>

同步练习册答案