相关习题
 0  247179  247187  247193  247197  247203  247205  247209  247215  247217  247223  247229  247233  247235  247239  247245  247247  247253  247257  247259  247263  247265  247269  247271  247273  247274  247275  247277  247278  247279  247281  247283  247287  247289  247293  247295  247299  247305  247307  247313  247317  247319  247323  247329  247335  247337  247343  247347  247349  247355  247359  247365  247373  266669 

科目: 来源: 题型:填空题

9.在如图的正方形OABC内任取一点,此点在由曲线y=x2和直线x=0,x=1,y=$\frac{1}{4}$所围成的阴影部分中的概率为$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

8.设集合S={1,2,3,4,5,6,7,8,9},A={a1,a2,a3}是S的子集,且a1、a2、a3满足a1<a2<a3,a3-a2≤5,则满足条件的集合A的个数为80.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知实数x、y满足$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x-3y的最小值是-21.

查看答案和解析>>

科目: 来源: 题型:选择题

6.若函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数m的取值为(  )
A.[$\frac{4}{3},3$]B.[$\frac{4}{3},2$]C.[$\frac{4}{3},2$)D.[$\frac{4}{3},+∞$)

查看答案和解析>>

科目: 来源: 题型:选择题

5.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是单位向量,若$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}}$,$\overrightarrow{b}在\overrightarrow{a}$方向的投影为$\frac{1}{2}$,则$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.小吴同学计划大学毕业后出国留学,其父母于2014年7月1日在银行存入a元钱,此后每年7月1日存入a元钱,若年利润为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,在小吴同学2019年7月1日大学毕业时取出这五笔存款,则可以取出的钱(元)的总数为(  )
A.a(1+p)5B.a(1+p)6C.$\frac{a}{p}$[(1+p)5-(1+p)]D.$\frac{a}{p}$[(1+p)6-(1+p)]

查看答案和解析>>

科目: 来源: 题型:选择题

3.设全集U=R,A={x||x|<2},B={x|y=$\sqrt{x-1}$},则图中阴影部分所表示的集合(  )
A.(-2,+∞)B.(1,2]C.(-2,1)D.(-2,1]

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知复数$\frac{a+i}{1-i}$在复平面内对应的点在虚轴上(不含原点),则实数a=(  )
A.-1B.1C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知f(x)=x2sinx,则函数f(x)在[-π,π]的图象是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆C1的中心在坐标原点,两焦点分别为双曲线C2:$\frac{{x}^{2}}{2}$-y2=1的顶点,直线x+$\sqrt{2}$y=0与椭圆C1交于A,B两点,且点A的坐标为(-$\sqrt{2}$,1),点P是椭圆C1上异于点A,B的任意一点,点Q满足$\overrightarrow{AQ}$•$\overrightarrow{AP}$=0,$\overrightarrow{BQ}$•$\overrightarrow{BP}$=0,且A,B,Q三点不共线.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)证明:点Q在曲线2x2+y2=5上.

查看答案和解析>>

同步练习册答案