相关习题
 0  247233  247241  247247  247251  247257  247259  247263  247269  247271  247277  247283  247287  247289  247293  247299  247301  247307  247311  247313  247317  247319  247323  247325  247327  247328  247329  247331  247332  247333  247335  247337  247341  247343  247347  247349  247353  247359  247361  247367  247371  247373  247377  247383  247389  247391  247397  247401  247403  247409  247413  247419  247427  266669 

科目: 来源: 题型:选择题

3.若向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=\sqrt{10}$,$|\overrightarrow a-\overrightarrow b|=\sqrt{6}$,则$\overrightarrow a$•$\overrightarrow b$=(  )
A.1B.2C.3D.5

查看答案和解析>>

科目: 来源: 题型:填空题

2.关于函数$f(x)={sin^2}x-{(\frac{2}{3})^{|x|}}+\frac{1}{2}$,有下面四个结论:
①f(x)是偶函数;      
②无论x取何值时,f(x)<$\frac{1}{2}$恒成立;
③f(x)的最大值是$\frac{3}{2}$;  
④f(x)的最小值是-$\frac{1}{2}$.
其中正确的结论是①④.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),那么α的值等于$\frac{5π}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知0<A<$\frac{π}{2}$,且cosA=$\frac{2}{3}$,那么sin2A等于(  )
A.$\frac{1}{9}$B.$\frac{7}{9}$C.$\frac{8}{9}$D.$\frac{{4\sqrt{5}}}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.给定函数f(x)=lg$\frac{{{x^2}+1}}{|x|}$,完成下列问题:
(1)指出函数的奇偶性;(必须说明理由)
(2)指出函数的单调区间;(必须说明理由)
(3)该函数是否存在最值?如存在,求出该最值.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x(x<0)}\\{\frac{ln(x+1)}{x+1},(x≥0)}\end{array}\right.$,参数k∈[-1,1],则方程f(x)-kx-k=0有四个实数根的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{2e}$D.$\frac{1}{4e}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数 f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)-$\frac{1}{2}{x^2}$在[1,2]上有且仅有一个零点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

16.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被G(X)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2$+\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$];
③f(x)=lnx在区间[1,e]可被g(x)=x-b替代,则e-2≤b≤2;
④f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(a≠0),使得f(x)在区间D1∩D2 上被g(x)替代;
其中真命题的有①②③.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若∠B=2∠A,且a:b=1:$\sqrt{3}$,则cos2B的值是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.若实数a,b,c,d满足(b+2a2-6lna)2+|2c-d+6|=0,则(a-c)2+(b-d)2的最小值为(  )
A.5B.$2\sqrt{5}$C.20D.4$\sqrt{5}$

查看答案和解析>>

同步练习册答案