相关习题
 0  247345  247353  247359  247363  247369  247371  247375  247381  247383  247389  247395  247399  247401  247405  247411  247413  247419  247423  247425  247429  247431  247435  247437  247439  247440  247441  247443  247444  247445  247447  247449  247453  247455  247459  247461  247465  247471  247473  247479  247483  247485  247489  247495  247501  247503  247509  247513  247515  247521  247525  247531  247539  266669 

科目: 来源: 题型:解答题

18.如图,已知抛物线C1:x2=2py的焦点在抛物线C2:y=$\frac{1}{2}$x2+$\frac{1}{4}$上.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过抛物线C1上的动点P作抛物线C2的两条切线PM、PN,切点为M、N.若PM、PN的斜率乘积为m,且m∈[$\frac{3}{2}$,$\frac{7}{2}$],求|OP|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:
接受挑战不接受挑战合计
男性501060
女性251540
合计7525100
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),ω>0.
(1)若f(x)在(0,$\frac{π}{3}$)上单调递增,求ω的最大值;
(2)若f(x+θ),θ∈(0,π)是周期为2π的偶函数,求ω及θ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知复数z=$\frac{(1+i)2+3(1-i)}{2+i}$则z的共轭复数$\overline{z}$=1+i.

查看答案和解析>>

科目: 来源: 题型:选择题

14.函数f(x)的定义域为R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式exf(x)>ex+1,的解集是(  )
A.{x|x>0}B.{x|x<0}C.{x|x<-1或x>1}D.{x|-1<x<1 }

查看答案和解析>>

科目: 来源: 题型:选择题

13.要证:a2+b2-1-a2b2≤0,只要证明(  )
A.2ab-1-a2b2≤0B.${a^2}+{b^2}-1-\frac{{{a^4}+{b^4}}}{2}≤0$
C.$\frac{{{{(a+b)}^2}}}{2}-1-{a^2}{b^2}≤0$D.(a2-1)(b2-1)≥0

查看答案和解析>>

科目: 来源: 题型:选择题

12.不等式(2+x)(x-3)<0的解集为(  )
A.(-∞,-2)∪(3,+∞)B.(-2,3)C.[-2,3]D.(-3,2)

查看答案和解析>>

科目: 来源: 题型:填空题

11.在等差数列{an}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=50.

查看答案和解析>>

科目: 来源: 题型:解答题

10.Sn是数列{an}的前n项和,
(1)若an+1=an+an-1(n≥2),且a7=8,求S10
(2)an=$\frac{1}{3}$(2n-(-1)n),bn=anan+1,bn-Sn•h>0对任意正整数n都成立,求h的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有(  )
A.474种B.77种C.464种D.79种

查看答案和解析>>

同步练习册答案