相关习题
 0  25319  25327  25333  25337  25343  25345  25349  25355  25357  25363  25369  25373  25375  25379  25385  25387  25393  25397  25399  25403  25405  25409  25411  25413  25414  25415  25417  25418  25419  25421  25423  25427  25429  25433  25435  25439  25445  25447  25453  25457  25459  25463  25469  25475  25477  25483  25487  25489  25495  25499  25505  25513  266669 

科目: 来源:韶关一模 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2≈8.333,你有多大的把握认为是否喜欢打蓝球与性别有关?下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目: 来源:深圳一模 题型:解答题

随机调查某社区80个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别有关系,得到下面的数据表:
休闲方式
性别
看电视 看书 合计
10 50 60
10 10 20
合计 20 60 80
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目: 来源:东莞二模 题型:解答题

通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意  单位:名
总计
满意 50 30 80
不满意 10 20 30
总计 60 50 110
(I)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,闷样本中浦意与不满意的女游客各有多少名?
(II)从(I)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(III》很招以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关.

查看答案和解析>>

科目: 来源:不详 题型:单选题

下列关于三维柱形图和二维条形图的叙述正确的是:(  )
A.从三维柱形图可以精确地看出两个分类变量是否有关系
B.从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小
C.从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系
D.以上说法都不对

查看答案和解析>>

科目: 来源:不详 题型:填空题

统计推断,当______时,有95%的把握说事件A与B有关;当______时,认为没有充分的证据显示事件A与B是有关的、

查看答案和解析>>

科目: 来源:不详 题型:解答题

为了解某班学生喜爱文学是否与性别有关,对本班50人进行了问卷调 查,得到了如下的列联表:
喜爱文学 不喜爱文学 合计
男生 10 15 25
女生 20 5 25
合计 30 20 50
(I)是否有99.5%的把握认为“喜爱文学与性别“有关?说明你的理由;
(II)已知喜爱文学的10位男生中,A1,A1,A3还喜欢美术;B1,B2,B3还喜欢音乐,C1,C2还 喜欢体育.现在从喜欢美术、音乐、体育的8位男生中各选出1名进行其他方面的调查,求男生B1和C1不全被选中的概率.给出以下临界值表供参考:
P (K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源:不详 题型:填空题

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
                                                  甲校
分组 [70,80) [80,90) [90,100) [100,110)
频道 2   10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校
分组 [70,80) [80,90) [90,100) [100,110)
频道 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(Ⅰ)计算x,y的值.
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
  甲校 乙校 总计
优秀      
非优秀      
总计      
(Ⅲ)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:K2=
nad-bc2
a+bc+da+cb+d

P(k2>k0 0.10 0.025 0.010
K 2.706 5.024 6.635

查看答案和解析>>

科目: 来源:新余二模 题型:填空题

为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
则至少有______的把握认为喜爱打篮球与性别有关?(请用百分数表示)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2>k0 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目: 来源:不详 题型:解答题

为考察某种甲型H1N1疫苗的效果,进行动物试验,得到如丢失数据的列联表:设从没服疫苗的动物中任取两只,未感染数为ξ;从服用疫苗的动物中任取两只,未感染为η,工作人员曾计算过.P(ξ=0)=
38
9
•P(η=0)

(1)求出列联表中数据x,y,M,N的值;
(2)求ξ与η的均值并比较大小,请解释所得出结论的实际含义;
(3)能够以97.5%的把握认为疫苗有效吗?
疫苗效果试验列联表
感染 未感染 总计
没服用 20 30 50
服用 x y 50
总计 M N 100
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d
P(K2≥K0 0.10 0.05 0.025 0.010
K0 2.706 3.841 5.024 6.635
参考数据:

查看答案和解析>>

科目: 来源:不详 题型:解答题

为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1
数学成绩 90分以下 90-120分 120-140分 140分以上
频    数 15 20 10 5
表2
数学成绩 90分以下 90-120分 120-140分 140分以上
频    数 5 40 3 2
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班  次 120分以下(人数) 120分以上(人数) 合计(人数)
一班      
二班      
合计      
参考数据:
P(K2≥k0 0.40 0.25 0.10 0.05 0.010 0.005
k0 0.708 1.323 2.706 3.841 6.635 7.879

查看答案和解析>>

同步练习册答案