相关习题
 0  25380  25388  25394  25398  25404  25406  25410  25416  25418  25424  25430  25434  25436  25440  25446  25448  25454  25458  25460  25464  25466  25470  25472  25474  25475  25476  25478  25479  25480  25482  25484  25488  25490  25494  25496  25500  25506  25508  25514  25518  25520  25524  25530  25536  25538  25544  25548  25550  25556  25560  25566  25574  266669 

科目: 来源:不详 题型:填空题

甲、乙、丙、三个人按任意次序站成一排,则甲站中间的概率为______.

查看答案和解析>>

科目: 来源:新疆模拟 题型:单选题

显示屏有一排7个小孔,每个小孔可显示0或1,若每次显示其中3个孔,但相邻的两孔不能同时显示,则该显示屏能显示信号的种数共有(  )种
A.10B.48C.60D.80

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲有一只放有x个红球,y个白球,z个黄球的箱子,箱内共有6个球,且每种颜色的球至少有一个;乙有一只放有3个红球,2个白球,1个黄球的箱子.两人各自从自己的箱子中任取一球,规定:当两球同色时为甲胜,两球异色时为乙胜.
(1)当x=1,且甲胜的概率为
1
4
时,求y与z;
(2)当x=2,y=3,z=1时,规定甲取红,白,黄而胜的得分分别为1分,2分,3分,负则得0分,记甲得分为随机变量ξ,求ξ的分布列及期望.

查看答案和解析>>

科目: 来源:不详 题型:填空题

有红、黄两种涂料可供选择去涂图中标号为1,2,3,4的4个小正方形(如表),求使1,4同色,2,3也同色的概率为______.
1 2
3 4

查看答案和解析>>

科目: 来源:不详 题型:解答题

有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.
求:
(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知甲盒中装有1,2,3,4,5号大小相同的小球各一个,乙盒中装有3,4,5,6,7号大小相同的小球各一个,现从甲、乙盒中各摸一小球(看完号码后放回),记其号码分别为x,y,如果x+y是3的倍数,则称摸球人为“好运人”.
(Ⅰ)求某人能成为“好运人”的概率;
(Ⅱ)如果有4人参与摸球,记能成为“好运人”的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:填空题

某中学在高一开设了数学史等4门不同的选项修课,每个学生必须选项修,且只从中选一门.该校高一的3名学生甲、乙、丙对这4门选课的兴趣相同,则3个学生选择了3门不同的选修课的概率是 ______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某班要从5名男生和3名女生中任选4名同学参加奥运知识竞赛.
(I)求所选的4人中恰有2名女生的概率;
(Ⅱ)求所选的4人中至少有1名女生的概率;
(Ⅲ)若参加奥运知识竞赛的选手获奖的概率均为
1
3
,则恰有2名选手获奖的概率是多少?

查看答案和解析>>

科目: 来源:福建模拟 题型:填空题

考察等式:
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
Ckm
Cr-kn-m
Crn
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
Crn

所以
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号______.

查看答案和解析>>

科目: 来源:不详 题型:单选题

甲、乙两人在街头约会,约定先到者到达后须等待10分钟,这时若另一个人还没有来就可以离开,已知甲在13:30到达,假设乙在13:00-14:00之间到达,且乙在13:00-14:00之间何时到达是等可能的,则甲、乙能见面的概率是(  )
A.
1
2
B.
1
3
C.
1
4
D.
1
6

查看答案和解析>>

同步练习册答案