相关习题
 0  25430  25438  25444  25448  25454  25456  25460  25466  25468  25474  25480  25484  25486  25490  25496  25498  25504  25508  25510  25514  25516  25520  25522  25524  25525  25526  25528  25529  25530  25532  25534  25538  25540  25544  25546  25550  25556  25558  25564  25568  25570  25574  25580  25586  25588  25594  25598  25600  25606  25610  25616  25624  266669 

科目: 来源:辽宁 题型:填空题

口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是  .(用数值作答)

查看答案和解析>>

科目: 来源:不详 题型:解答题

在“环境保护低碳生活知识竞赛”第一环节测试中,设有A、B、C三道必答题,分值依次为20分、30分、50分.竞赛规定:若参赛选手连续两道题答题错误,则必答题总分记为零分;否则各题得分之和记为必答题总分.已知某选手回答A、B、C三道题正确的概率分别为
1
2
1
3
1
4
,且回答各题时相互之间没有影响.(Ⅰ)若此选手可以自由选择答题顺序,求其必答题总分为50分的概率;(Ⅱ)若此选手按A、B、C的顺序答题,求其必答题总分ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某养鸡场流行一种传染病,鸡的感染率为10%.现对50只鸡进行抽血化验,以期查出所有病鸡.设计了如下方案:按n(1≤n≤50,且n是50的约数)只鸡一组平均分组,并把同组的n只鸡抽到的血混合在一起化验,若发现有问题,即对该组的n只鸡逐只化验.记X为某一组中病鸡的只数.
(1)若n=5,求随机变量X的概率分布和数学期望;
(2)为了减少化验次数的期望值,试确定n的大小.
(参考数据:取0.93=0.73,0.94=0.66,0.95=0.59,0.910=0.35,0.925=0.07.)

查看答案和解析>>

科目: 来源:不详 题型:填空题

甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的80%,乙厂生产的占20%;甲厂商品的合格率为95%,乙厂商品的合格率为90%.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

从编号分别为1,2,3,…9的9张卡中任意抽取3张,将它们的编号从小到大依次记为x、y、z,则y-x≥2且z-y≥2的概率是(  )
A.
1
3
B.
1
4
C.
5
28
D.
5
12

查看答案和解析>>

科目: 来源:淄博二模 题型:解答题

某社区举办2010年上海世博会知识宣传活动,进行现场抽奖.现有“世博会会徽”、“海宝”(世博会吉祥物)图案和普通卡片三种卡片共24张.
(1)若已知“世博会会徽”共3张,若从中任取出1张卡片,取到“海宝”的概率是
1
6
.问普通卡片的张数是多少?
(2)现将1张“世博会会徽”、2张“海宝”、3张普通卡片放置抽奖盒中,抽奖规则是:抽奖者每次抽取两张卡片,若抽到两张“海宝”卡获一等奖,抽到“世博会会徽”获二等奖.求抽奖者获奖的概率.

查看答案和解析>>

科目: 来源:不详 题型:解答题

A市将于2010年6月举行中学生田径运动会,该市某高中将组队参赛,其中队员包括10名男子短跑选手,来自高中一、二、三年级的人数分别为2、3、5.
(Ⅰ)从这10名选手中选派2人参加100米比赛,求所选派选手为不同年级的概率;
(Ⅱ)若从这l0名选手中选派4人参加4×100米接力比赛,且所选派的4人中,高一、高二年级的人数之和不超过高三年级的人数,记此时选派的高三年级的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.
(1)摸出2个或3个白球                   
(2)至少摸出一个黑球.

查看答案和解析>>

科目: 来源:深圳模拟 题型:解答题

甲、乙、丙、丁4名同学被随机地分到A、B、C三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到A社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量ξ为四名同学中到A社区的人数,求ξ的分布列和Eξ的值.

查看答案和解析>>

同步练习册答案