相关习题
 0  25883  25891  25897  25901  25907  25909  25913  25919  25921  25927  25933  25937  25939  25943  25949  25951  25957  25961  25963  25967  25969  25973  25975  25977  25978  25979  25981  25982  25983  25985  25987  25991  25993  25997  25999  26003  26009  26011  26017  26021  26023  26027  26033  26039  26041  26047  26051  26053  26059  26063  26069  26077  266669 

科目: 来源:山东省高考真题 题型:解答题

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

查看答案和解析>>

科目: 来源:湖南省高考真题 题型:解答题

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为
(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率。

查看答案和解析>>

科目: 来源:湖北省高考真题 题型:解答题

某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2;从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换,
(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;
(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;
(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字)。

查看答案和解析>>

科目: 来源:辽宁省高考真题 题型:单选题

甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是

[     ]

A.p1p2
B.p1(1-p2)+p2(1-p1
C.1-p1p2
D.1-(1-p1)(1-p2

查看答案和解析>>

科目: 来源:天津高考真题 题型:解答题

如图,用A、B、C三类不同的无件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90;分别求系统N1、N2正常工作的概率P1、P2

查看答案和解析>>

科目: 来源:天津高考真题 题型:解答题

在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验。
(1)求恰有一件不合格的概率;
(2)求至少有两件不合格的概率。(精确到0.001)

查看答案和解析>>

科目: 来源:福建省高考真题 题型:填空题

某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响。有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14
其中正确结论的序号是(    )。(写出所有正确结论的序号)

查看答案和解析>>

科目: 来源:广东省高考真题 题型:单选题

一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是
[     ]
A.0.1536
B.0.1808
C.0.5632
D.0.9728

查看答案和解析>>

科目: 来源:专项题 题型:解答题

某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为,甲、乙、丙三位同学每人购买了一瓶该饮料。
(1)求三位同学都没有中奖的概率;
(2)求三位同学中至少有两位没有中奖的概率。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(1)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2,表1。
表一
生产能力分组
[100,110)
[110,120)
[120,130)
[130,140)
[140,150)
人数
4
8
x
5
3
表二
生产能力分组
[110,120)
[120,130)
[130,140)
[140,150)
人数
6
y
36
18
(i)先确定x,y再完成下列频率分布直方图;
 
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表)。

查看答案和解析>>

同步练习册答案