科目: 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数
的监测数据,结果统计如下:
![]()
记某企业每天由空气污染造成的经济损失
(单位:元),空气质量指数
为
.当
时,企业没有造成经济损失;当
对企业造成经济损失成直线模型(当
时造成的经济损失为
,当
时,造成的经济损失
;当
时造成的经济损失为2000元;
(1)试写出
的表达式:
(2)在本年内随机抽取一天,试估计该天经济损失超过350元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?
![]()
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】将函数
的图象向右平移
个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长均相等的四棱锥
中,
为底面正方形的中心,
,
分别为侧棱
,
的中点,有下列结论正确的有:( )
![]()
A.
∥平面
B.平面
∥平面![]()
C.直线
与直线
所成角的大小为
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
.
(1)若
在区间
上不单调,求
的取值范围;
(2)设
,若函数
在区间
恒有意义,求实数
的取值范围;
(3)已知方程
在
有两个不相等的实数根,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB
BP
2,AD=AE=1,AE⊥AB,且AE∥BP.
![]()
(1)求平面PCD与平面ABPE所成的二面角的余弦值;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于
?若存在,试确定点N的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学用“五点法”画函数
在某一周期内的图象时,列表并填入了部分数据,如下表:
|
|
|
|
|
|
|
| ① |
| ||
|
|
|
|
|
|
(1)请将上面表格中①的数据填写在答题卡相应位置上,并直接写出函数
的解析式;
(2)若将函数
的图象上所有点的横坐标变为原来的
倍,纵坐标不变,得到函数
的图象,求当
时,函数
的单调递增区间;
(3)若将函数
图象上的所有点向右平移
个单位长度,得到
的图象. 若
图象的一个对称中心为
,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知两个定点
,动点
满足
.设动点
的轨迹为曲线
,直线
.
(1)求曲线
的轨迹方程;
(2)若
与曲线
交于不同的
两点,且
(
为坐标原点),求直线
的斜率;
(3)若
,
是直线
上的动点,过
作曲线
的两条切线
,切点为
,探究:直线
是否过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1)
.
(1)求f(x)的解析式;
(2)若关于x的方程f(
1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;
(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com