相关习题
 0  262483  262491  262497  262501  262507  262509  262513  262519  262521  262527  262533  262537  262539  262543  262549  262551  262557  262561  262563  262567  262569  262573  262575  262577  262578  262579  262581  262582  262583  262585  262587  262591  262593  262597  262599  262603  262609  262611  262617  262621  262623  262627  262633  262639  262641  262647  262651  262653  262659  262663  262669  262677  266669 

科目: 来源: 题型:

【题目】设数列{an}的前n项和为Sn,a1=3,且Sn=nan1-n2-n.

(1){an}的通项公式;

(2)若数列{bn}满足,求{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有四个小球,分别写有美、丽、中、国四个字,有放回地从中任取一个小球,直到“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生03之间取整数值的随机数,分别用0,1,2,3代表中、国、美、丽这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估计,恰好第三次就停止的概率为

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一扇形的圆心角为α,半径为R,弧长为l.

(1)若α=60°,R=10 cm,求扇形的弧长l;

(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角;

(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目: 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是t为参数).

1)求曲线C的直角坐标方程和直线L的普通方程;

2)设点Pm0),若直线L与曲线C交于AB两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列命题:

①已知是正数,且,则

②命题“,使得”的否定是真命题;

③将化成二进位制数是

④某同学研究变量之间的相关关系,并求得回归直线方程,他得出一个结论: 负相关且

其中正确的命题的序号是__________(把你认为正确的序号都填上).

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:

(1)求的值及这50名同学数学成绩的平均数

(2)该学校为制定下阶段的复习计划,从成绩在的同学中选出3位作为代表进行座谈,若已知成在的同学中男女比例为21,求至少有一名女生参加座谈的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知PC⊥BC,PC⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是 (  )

A.平面EFG∥平面PBC

B.平面EFG⊥平面ABC

C.∠BPC是直线EF与直线PC所成的角

D.∠FEG是平面PAB与平面ABC所成二面角的平面角

查看答案和解析>>

同步练习册答案