科目: 来源: 题型:
【题目】下列事件A,B是独立事件的是( )
A. 一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”
B. 袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”
C. 掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”
D. A=“人能活到20岁”,B=“人能活到50岁”
查看答案和解析>>
科目: 来源: 题型:
【题目】某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.
(1)问捕捞几年后总盈利最大,最大是多少?
(2)问捕捞几年后的平均利润最大,最大是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数
其中x是新样式单车的月产量(单位:辆),利润=总收益-总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】一次数学测验中,全班
名学生的数学成绩的频率分布直方图如下,已知分数在
的学生数有14人.
![]()
(1)求总人数
和分数在
的人数
;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数,平均数各是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
、
为双曲线![]()
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
,圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
的首项为1.记
.
(1)若
为常数列,求
的值:
(2)若
为公比为2的等比数列,求
的解析式:
(3)是否存在等差数列
,使得
对一切
都成立?若存在,求出数列
的通项公式:若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点
到点
的距离,等于它到直线
的距离.
(1)求点
的轨迹
的方程;
(2)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.
设线段
,
的中点分别为
,求证:直线
恒过一个定点;
(3)在(2)的条件下,求
面积的最小值
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年8月31日,十三届全国人大常委会第五次会议表决通过了关于修改个人所得税法的决定,这是我国个人所得税法自1980年出台以来第七次大修
为了让纳税人尽早享受减税红利,在过渡期对纳税个人按照下表计算个人所得税,值得注意的是起征点变为5000元,即如表中“全月应纳税所得额”是纳税者的月薪金收入减去5000元后的余额.
级数 | 全月应纳税所得额 | 税率 |
1 | 不超过3000元的部分 |
|
2 | 超过3000元至12000元的部分 |
|
3 | 超过12000元至25000元的部分 |
|
|
|
|
某企业员工今年10月份的月工资为15000元,则应缴纳的个人所得税为______元![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com