相关习题
 0  26423  26431  26437  26441  26447  26449  26453  26459  26461  26467  26473  26477  26479  26483  26489  26491  26497  26501  26503  26507  26509  26513  26515  26517  26518  26519  26521  26522  26523  26525  26527  26531  26533  26537  26539  26543  26549  26551  26557  26561  26563  26567  26573  26579  26581  26587  26591  26593  26599  26603  26609  26617  266669 

科目: 来源:不详 题型:解答题

某银行的一个营业窗口可办理四类业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟,经统计以往100位顾客办理业务所需的时间(t),结果如下:
类别 A类 B类 C类 D类
顾客数(人) 20 30 40 10
时间t(分钟/人) 2 3 4 6
注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率.
(Ⅰ)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;
(Ⅱ)用X表示至第4分钟末已办理完业务的顾客人数,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某射击比赛的规则如下:
①每位选手最多射击3次,每次射击击中目标,方可进行下一次射击,否则停止;
②第l次射击时,规定击中目标得(4-i)分,否则得0分(i=1,2,3).已知选手甲每次射击击中目标的概率均为0.8,且其各次射击结果互不影响,
(I)求甲恰好射击两次就停止的概率;
(II)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源:不详 题型:解答题

2008年奥运会的一套吉祥物有五个,分别命名:“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”,称“奥运福娃”.甲、乙两位小学生各有一套吉祥物,现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲将赢得乙一个福娃;否则乙赢得甲一个福娃.现规定掷骰子的总次数达9次时,或在此前某学生已赢得所有福娃时游戏终止,记游戏终止时投掷骰子的总次数为ξ.
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目: 来源:不详 题型:解答题

甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为
3
5
,乙与丙击中目标的概率分别为m,n(m>n),每人是否击中目标是相互独立的.记目标被击中的次数为ξ,且ξ的分布列如下表:
ξ 0 1 2 3
P
1
15
a b
1
5
(Ⅰ)求m,n的值;
(Ⅱ)求ξ的数学期望.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知随机变量X~N(2,σ2)(σ>0),若X在(0,2)内取值的概率为0.3,则X在(4,+∞)内的概率为 ______.

查看答案和解析>>

科目: 来源:安徽 题型:解答题

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评为.
现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,
则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,
①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.

查看答案和解析>>

科目: 来源:普宁市模拟 题型:解答题

某菜园要将一批蔬菜用汽车从城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(×月×日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:

统计信息
汽车
行驶路线
不堵车的情况下到达亚运村乙所需时间(天) 堵车的情况下到达亚运村乙所需时间(天) 堵车的概率 运费(万元)
公路1 2 3 0.1 1.6
公路2 1 4 0.5 0.8
( 注:毛利润=销售商支付给菜园的费用-运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望Eξ;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某地有A.B.C.D四人先后感染了甲型H1N1流感,其中只有A到过疫区,B肯定是受A感染的.对于C,因为难以判定他是受A还是受B感染的,于是假定他受A和受B感染的概率分别是
2
3
1
3
.同样也假设D受A.B和C感染的概率都是1/3.在这种假定之下,B.C.D中直接受A感染的人数X就是一个随机变量.写出X的分布列(列表前要写分步过程),并求X的均值(即数学期望).

查看答案和解析>>

科目: 来源:不详 题型:填空题

设随机变量ξ的分布列为P(ξ=i)=m(
1
2
),i=1,2,3,4,则m的值为______.

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(1)求这三人恰有两人消费额大于300元的概率;
(2)求这三人消费总额大于或等于1300元的概率;
(3)设这三人中消费额大于300元的人数为ξ,求ξ的分布列及ξ的数学期望。

查看答案和解析>>

同步练习册答案