科目: 来源: 题型:
【题目】数列
的数列
的首项
,前n项和为
,若数列
满足:对任意正整数n,k,当
时,
总成立,则称数列
是“
数列”
(1)若
是公比为2的等比数列,试判断
是否为“
”数列?
(2)若
是公差为d的等差数列,且是“
数列”,求实数d的值;
(3)若数列
既是“
”,又是“
”,求证:数列
为等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知椭圆
的离心率为
,点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,
轴,垂足为E,连结QE并延长交C于点G.
①求证:
是直角三角形;
②求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:
![]()
方案① 多边形为直角三角形
(
),如图1所示,其中
;
方案② 多边形为等腰梯形
(
),如图2所示,其中
.
请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣|x﹣5|.
(1)当a=2时,求证:﹣3≤f(x)≤3;
(2)若关于x的不等式f(x)≤x2﹣8x+20在R恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据某地区气象水文部门长期统计,可知该地区每年夏季有小洪水的概率为0.25,有大洪水的概率为0.05.
(1)从该地区抽取的
年水文资料中发现,恰好3年无洪水事件的概率与恰好4年有洪水事件的概率相等,求
的值;
(2)今年夏季该地区某工地有许多大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失20000元.为保护设备,有以下3种方案:
方案1:修建保护围墙,建设费为3000元,但围墙只能防小洪水.
方案2:修建保护大坝,建设费为7000元,能够防大洪水.
方案3:不采取措施.
试比较哪一种方案好,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
为平面上一点,
为直线
:
上任意一点,过点
作直线
的垂线
,设线段
的中垂线与直线
交于点
,记点
的轨迹为
.
(1)求轨迹
的方程;
(2)过点
作互相垂直的直线
与
,其中直线
与轨迹
交于点
、
,直线
与轨迹
交于点
、
,设点
,
分别是
和
的中点,求
的面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在数学中有这样形状的曲线:
.关于这种曲线,有以下结论:
①曲线
恰好经过9个整点(即横、纵坐标均为整数的点);
②曲线
上任意两点之间的距离都不超过2;
③曲线
所围成的“花瓣”形状区域的面积大于5.
其中正确的结论有:( )
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)
sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为
,则f(
)的值为( )
A.﹣1B.1C.
.D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,且直线
与曲线C有两个不同的交点.
(1)求实数a的取值范围;
(2)已知M为曲线C上一点,且曲线C在点M处的切线与直线
垂直,求点M的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com