科目: 来源: 题型:
【题目】“三分损益法”是古代中国发明制定音律时所用的方法,其基本原理是:以一根确定长度的琴弦为基准,取此琴强长度的
得到第二根琴弦,第二根琴弦长度的
为第三根琴弦,第三根琴弦长度的
为第四根琴弦.第四根琴弦长度的
为第五根琴弦.琴弦越短,发出的声音音调越高,这五根琴弦发出的声音按音调由低到高分别称为“官、商、角(jué)、微(zhǐ)、羽”,则“角"和“徵”对应的琴弦长度之比为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】假定某射手每次射击命中的概率为
,且只有3发子弹.该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:
(1)目标被击中的概率;
(2)X的概率分布列;
(3)均值
,方差V(X).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)若
在
处的切线方程为
,求实数
的值;
(2)证明:当
时,
在
上有两个极值点;
(3)设
,若
在
上是单调减函数(
为自然对数的底数),求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在等比数列
中,已知
设数列
的前n项和为
,且![]()
(1)求数列
通项公式;
(2)证明:数列
是等差数列;
(3)是否存在等差数列
,使得对任意
,都有
?若存在,求出所有符合题意的等差数列
;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
与椭圆
相交于点M(0,1),N(0,-1),且椭圆的离心率为
.
![]()
(1)求
的值和椭圆C的方程;
(2)过点M的直线
交圆O和椭圆C分别于A,B两点.
①若
,求直线
的方程;
②设直线NA的斜率为
,直线NB的斜率为
,问:
是否为定值? 如果是,求出定值;如果不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】从秦朝统一全国币制到清朝末年,圆形方孔铜钱(简称“孔方兄”)是我国使用时间长达两千多年的货币.如图1,这是一枚清朝同治年间的铜钱,其边框是由大小不等的两同心圆围成的,内嵌正方形孔的中心与同心圆圆心重合,正方形外部,圆框内部刻有四个字“同治重宝”.某模具厂计划仿制这样的铜钱作为纪念品,其小圆内部图纸设计如图2所示,小圆直径1厘米,内嵌一个大正方形孔,四周是四个全等的小正方形(边长比孔的边长小),每个正方形有两个顶点在圆周上,另两个顶点在孔边上,四个小正方形内用于刻铜钱上的字.设
,五个正方形的面积和为S.
![]()
![]()
(1)求面积S关于
的函数表达式,并求定义域;
(2)求面积S的最小值及此时
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
交于
两点.
(1)求直线
l的普通方程和曲线
的直角坐标方程;
(2)已知点
的极坐标为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直角坐标系中,圆的方程为
,
,
,
为圆上三个定点,某同学从
点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子
次时,棋子移动到
,
,
处的概率分别为
,
,
.例如:掷骰子一次时,棋子移动到
,
,
处的概率分别为
,
,
.
![]()
(1)分别掷骰子二次,三次时,求棋子分别移动到
,
,
处的概率;
(2)掷骰子
次时,若以
轴非负半轴为始边,以射线
,
,
为终边的角的余弦值记为随机变量
,求
的分布列和数学期望;
(3)记
,
,
,其中
.证明:数列
是等比数列,并求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com