相关习题
 0  265224  265232  265238  265242  265248  265250  265254  265260  265262  265268  265274  265278  265280  265284  265290  265292  265298  265302  265304  265308  265310  265314  265316  265318  265319  265320  265322  265323  265324  265326  265328  265332  265334  265338  265340  265344  265350  265352  265358  265362  265364  265368  265374  265380  265382  265388  265392  265394  265400  265404  265410  265418  266669 

科目: 来源: 题型:

【题目】已知棱长为的正方体中,分别为棱的中点.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

40岁以下

40岁以上

合计

很兴趣

30

15

45

无兴趣

20

35

55

合计

50

50

100

1)根据列联表,能否有的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从岁以下的被调查者中用分层抽样的方式抽取了名,现从这名被调查者中随机选取名,求这名被调查者中恰有名对手机游戏无兴趣的概率.

0.100

0.050

0.010

0.001

2.706

3.84

6.635

10.828

(注:参考公式:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)若直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )

A.28B.56C.84D.120

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系中,已知直线的参数方程为s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于AB两点.

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)已知点P的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线交于M,抛物线C的焦点为F,且.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设点Q是抛物线C上的动点,点DEy轴上,圆内切于三角形,求三角形的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】目前,我国老年人口比例不断上升,造成日趋严峻的人口老龄化问题.20191012日,北京市老龄办、市老龄协会联合北京师范大学中国公益研究院发布《北京市老龄事业发展报告(2018)》,相关数据有如下图表.规定年龄在15岁至59岁为劳动年龄,具备劳动力,60岁及以上年龄为老年人,据统计,2018年底北京市每2.4名劳动力抚养1名老年人.

(Ⅰ)请根据上述图表计算北京市2018年户籍总人口数和北京市2018年的劳动力数;(保留两位小数)

(Ⅱ)从2014年起,北京市老龄人口与年份呈线性关系,比照2018年户籍老年人人口年龄构成,预计到2020年年底,北京市90以上老人达到多少人?(精确到1人)

(附:对于一组数据其回归直线的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面为平行四边形,底面.

(Ⅰ)求证:平面平面

(Ⅱ)若E是侧棱上的一点,且与底面所成的是为45°,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系中,已知直线的参数方程为s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于AB两点.

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)已知点P的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线交于M,抛物线C的焦点为F,且.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设点Q是抛物线C上的动点,点DEy轴上,圆内切于三角形,求三角形的面积的最小值.

查看答案和解析>>

同步练习册答案