科目: 来源: 题型:
【题目】等差数列
首项和公差都是
,记
的前n项和为
,等比数列
各项均为正数,公比为q,记
的前n项和为
:
(1)写出![]()
构成的集合A;
(2)若将
中的整数项按从小到大的顺序构成数列
,求
的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得![]()
同时为(1)中集合A的元素?若存在,写出所有符合条件的
的通项公式,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C上的点
到点
的距离与它到直线
的距离之比为
,圆O的方程为
,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中
,设直线AB,AC的斜率分别为![]()
;
(1)求曲线C的方程,并证明
到点M的距离
;
(2)求
的值;
(3)记直线PQ,BC的斜率分别为
、
,是否存在常数
,使得
?若存在,求
的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减;②存在常数p,使其值域为
,则称函数
为
的“渐近函数”;
(1)证明:函数
是函数![]()
的渐近函数,并求此时实数p的值;
(2)若函数![]()
![]()
,证明:当
时,
不是
的渐近函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,记棱长为1的正方体
,以
各个面的中心为顶点的正八面体为
,以
各面的中心为顶点的正方体为
,以
各个面的中心为顶点的正八面体为
,……,以此类推得一系列的多面体
,设
的棱长为
,则数列
的各项和为________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
,离心率为
,直线
恒过
的一个焦点
.
(1)求
的标准方程;
(2)设
为坐标原点,四边形
的顶点均在
上,
交于
,且
,若直线
的倾斜角的余弦值为
,求直线
与
轴交点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:
![]()
(1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;
(2)将成绩在
内定义为“合格”;成绩在
内定义为“不合格”.①请将下面的
列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;
合格 | 不合格 | 合计 | |
男生 | 26 | ||
女生 | 6 | ||
合计 |
(3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.附:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,
的参数方程为
(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(1)求
的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到
距离的最大值及该点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com