相关习题
 0  28202  28210  28216  28220  28226  28228  28232  28238  28240  28246  28252  28256  28258  28262  28268  28270  28276  28280  28282  28286  28288  28292  28294  28296  28297  28298  28300  28301  28302  28304  28306  28310  28312  28316  28318  28322  28328  28330  28336  28340  28342  28346  28352  28358  28360  28366  28370  28372  28378  28382  28388  28396  266669 

科目: 来源: 题型:

为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图).在直线x=2的右侧,考察范围为到点B的距离不超过
6
5
5
km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4
5
km的区域.
(Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-
13

(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

1、(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为
y2=8x

查看答案和解析>>

科目: 来源: 题型:

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x<
12
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).

查看答案和解析>>

科目: 来源: 题型:

函数f(x)的定义域为(0,+∞),对于任意的正实数m,n,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0,证明f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目: 来源: 题型:

20、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

查看答案和解析>>

科目: 来源: 题型:

已知二次函数f(x)=(lga)x2+2x+4lga的最大值是3,求a的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
mx2+2
3x+n
是奇函数,且f(2)=
5
3

(Ⅰ)求实数m和n的值;
(Ⅱ)判断函数f(x)在(-∞,-1]上的单调性,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

17、设全集U=R,A={x|x2-x-2≤0},B={x|0<x-1<2},则A∩B=
{x|1<x≤2}

查看答案和解析>>

科目: 来源: 题型:

若函数f(x)定义域内有两个任意实数x1,x2,满足f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)为凸函数,下列函数中是凸函数的为
 

①f(x)=3x+1,②f(x)=
1
x
x∈(-∞,0),③f(x)=x2-3x-2,④f(x)=-|x+1|

查看答案和解析>>

同步练习册答案