相关习题
 0  28748  28756  28762  28766  28772  28774  28778  28784  28786  28792  28798  28802  28804  28808  28814  28816  28822  28826  28828  28832  28834  28838  28840  28842  28843  28844  28846  28847  28848  28850  28852  28856  28858  28862  28864  28868  28874  28876  28882  28886  28888  28892  28898  28904  28906  28912  28916  28918  28924  28928  28934  28942  266669 

科目: 来源: 题型:

求下列事件的概率:
(1)第一盒中有4个白球与2个黄球,第二盒中有3个白球与3个黄球.分别从每个盒中取出1个球,求取出2个球中有1个白球与1个黄球的概率;
(2)经过某十字路口的汽车可能直行,可能左转也可能右转.如果3辆汽车过这个十字路口,求3辆车中2辆右转,1辆直行的概率.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=
x+sinxx
,g(x)=xcosx-sinx.
(1)求证:当x∈(0,π]时,g(x)<0;
(2)存在x∈(0,π],使得f(x)<a成立,求a的取值范围;
(3)若g(bx)≤bxcosbx-bsinx(b≥-1)对x∈(0,π]恒成立,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

定义:F(x,y)=xy+lnx,x∈(0,+∞),y∈R,f(x)=F(x,
x
a
)
(其中a≠0).
(1)求 f(x) 的单调区间;
(2)若f(x)<-
1
2
恒成立,试求实数a的取值范围;
(3)记f′(x)为f(x)的导数,当a=1时,对任意的n∈N*,在区间[1,f′(n)]上总存在k个正数a1,a2,a3,…,a4,使
k
i=1
f′(ai)≥2010
成立,试求k的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
a
a2-1
(ax-a-x)
,其中a>0且a≠1.
(1)分别判断f(x)在(-∞,+∞)上的单调性;
(2)比较f(1)-1与f(2)-2、f(2)-2与f(3)-3的大小,由此归纳出一个更一般的结论,并证明;
(3)比较
f(1)
1
f(2)
2
f(2)
2
f(3)
3
的大小,由此归纳出一个更一般的结论,并证明.

查看答案和解析>>

科目: 来源: 题型:

在R上定义运算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常数),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;
③记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目: 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知平面直角坐标系xOy中O是坐标原点,A(6,2
3
),B(8,0)
,圆C是△OAB的外接圆,过点(2,6)的直线l被圆所截得的弦长为4
3

(1)求圆C的方程及直线l的方程;
(2)设圆N的方程(x-4-7cosθ)2+(y-7sinθ)2=1,(θ∈R),过圆N上任意一点P作圆C的两条切线PE,PF,切点为E,F,求
CE
CF
的最大值.

查看答案和解析>>

科目: 来源: 题型:

(理)已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=m(m∈N*),则这样的三角形共有
 
个(用m表示).

查看答案和解析>>

科目: 来源: 题型:

20、已知实数x,y满足约束条件:x+2y<5,2x+y<4,x>0,y>0,则区域内的整数点有
10
个.

查看答案和解析>>

科目: 来源: 题型:

设关于x的不等式组
x2+2ax+3-a<0
|x+1<2
解集为A,Z为整数集,且A∩Z共有两个元素,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案