相关习题
 0  28952  28960  28966  28970  28976  28978  28982  28988  28990  28996  29002  29006  29008  29012  29018  29020  29026  29030  29032  29036  29038  29042  29044  29046  29047  29048  29050  29051  29052  29054  29056  29060  29062  29066  29068  29072  29078  29080  29086  29090  29092  29096  29102  29108  29110  29116  29120  29122  29128  29132  29138  29146  266669 

科目: 来源: 题型:

过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为
 

查看答案和解析>>

科目: 来源: 题型:

两个正数a,b的等差中项是5,等比中项是4.若a>b,则双曲线
x2
a
-
y2
b
=1的渐近线方程是
 

查看答案和解析>>

科目: 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目: 来源: 题型:

设P是双曲线
x2
a2
-
y2
9
=1
上一点,该双曲线的一条渐近线方程是3x+4y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=10,则|PF2|等于(  )
A、2B、18C、2或18D、16

查看答案和解析>>

科目: 来源: 题型:

1、方程ax2+by2=c表示双曲线是ab<0的(  )

查看答案和解析>>

科目: 来源: 题型:

已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为
1
2
,公比为
1
2
的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若a52=
1
128
,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知关于t的方程t2-2t+a=0(a∈R)有两个虚根t1、t2,且满足|t1-t2|=2
3

(1)求方程的两个根以及实数a的值.
(2)若对于任意x∈R,不等式loga(x2+a)≥-k2+2mk-2k对于任意的k∈[2,3]恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB平行于CD,AD=DC=DD1=
12
AB=1
,AD1⊥A1C,E是A1B1中点.
(1)求证:CD⊥A1D1
(2)求二面角C-D1E-B1的大小.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
-2-x+1x≤0
f(x-1)x>0
,则下列命题中:
(1)函数f(x)在[-1,+∞)上为周期函数;
(2)函数f(x)在区间[m,m+1)(m∈N)上单调递增;
(3)函数f(x)在x=m-1(m∈N)取到最大值0,且无最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则a∈[
1
3
1
2
)

正确的命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案