相关习题
 0  30120  30128  30134  30138  30144  30146  30150  30156  30158  30164  30170  30174  30176  30180  30186  30188  30194  30198  30200  30204  30206  30210  30212  30214  30215  30216  30218  30219  30220  30222  30224  30228  30230  30234  30236  30240  30246  30248  30254  30258  30260  30264  30270  30276  30278  30284  30288  30290  30296  30300  30306  30314  266669 

科目: 来源: 题型:

如果圆柱的底面直径和高相等,且圆柱的侧面积是4π,则圆柱的体积等于(  )
A、4
π
B、4π
C、2
π
D、2π

查看答案和解析>>

科目: 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
1
3
对称,则f(-
2
3
)
=(  )
A、0B、1C、-1D、2

查看答案和解析>>

科目: 来源: 题型:

log2a
1+a3
1+a
<0
,则a的取值范围是(  )
A、(0,
1
2
)
B、(
1
2
,1)
C、(
1
2
,+∞)
D、(1,+∞)

查看答案和解析>>

科目: 来源: 题型:

已知f(x)=x
1
2
,若0<a<b<1,则下列各式中正确的是(  )
A、f(a)<f(b)<f(
1
a
)<f(
1
b
)
B、f(
1
a
)<f(
1
b
)<f(b)<f(a)
C、f(a)<f(b)<f(
1
b
)<f(
1
a
)
D、f(
1
a
)<f(a)<f(
1
b
)<f(b)

查看答案和解析>>

科目: 来源: 题型:

“函数f(x)=mx+1在R上是增函数”是“3m-4≥0”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:

数列{an},a1=1,an+1=2an-n2+3n(n∈N*
(1)是否存在常数λ、u,使得数列{an+λn2+um}是等比数列,若存在,求出λ、u的值,若不存在,说明理由.
(2)设bn=
1
an+n-2n-1
,Sn=b1+b2+b3+…+bn,证明:当n≥2时,
6n
(n+1)(2n+1)
<Sn<
5
3

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系内有两个定点F1,F2和动点P,F1,F2坐标分别为F1(-1,0)、F2(1,0),动点P满足
|
 
PF1
|
|
 
PF2
|
=
2
2
,动点P的轨迹为曲线C,曲线C关于直线y=x的对称曲线为曲线C″,直线y=x+m-3与曲线C″交于A、B两点,O是坐标原点,△ABO的面积为
7

(1)求曲线C的方程;
(2)求m的值.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=
1
3
ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(3)若当x≥k时(k是与a,b,c无关的常数),恒有f′(x)+a<0,试求k的最小值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,以A1,A2为焦点的双曲线E与半径为c的圆O相交于C,D,C1,D1,连接CC1与OB交于点H,且有:
OH
=(3+2
3
)
HB
.其中A1,A2,B是圆O与坐标轴的交点,c为双曲线的半焦距.
(1)当c=1时,求双曲线E的方程;
(2)试证:对任意正实数c,双曲线E的离心率为常数.
(3)连接A1C与双曲线E交于F,是否存在
实数λ,使
A1F
FC
恒成立,若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

同步练习册答案