相关习题
 0  30402  30410  30416  30420  30426  30428  30432  30438  30440  30446  30452  30456  30458  30462  30468  30470  30476  30480  30482  30486  30488  30492  30494  30496  30497  30498  30500  30501  30502  30504  30506  30510  30512  30516  30518  30522  30528  30530  30536  30540  30542  30546  30552  30558  30560  30566  30570  30572  30578  30582  30588  30596  266669 

科目: 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,椭圆与直线x+2y+8=0相交于点P,Q,且|PQ|=
10
,求椭圆的方程.

查看答案和解析>>

科目: 来源: 题型:

双曲线与椭圆
x2
27
+
y2
36
=1
有相同焦点,且经过点(
15
,4)

(1)求双曲线的方程;
(2)求双曲线的离心率.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,以AB为直径的圆有一内接梯形ABCD,且AB∥CD.若双曲线C1以A、B为焦点,且过C、D两点,则当梯形的周长最大时,双曲线的离心率为
 

查看答案和解析>>

科目: 来源: 题型:

如果椭圆
x2
36
+
y2
9
=1
上的弦被点(1,-2)平分,那么这条弦所在的直线方程是
 

查看答案和解析>>

科目: 来源: 题型:

中心在原点,焦点在x轴上,焦距等于6,离心率等于
3
5
,则椭圆的方程是(  )
A、
x2
100
+
y2
36
=1
B、
x2
100
+
y2
64
=1
C、
x2
25
+
y2
16
=1
D、
x2
25
+
y2
9
=1

查看答案和解析>>

科目: 来源: 题型:

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

科目: 来源: 题型:

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点.记直线OP的斜率k=f(x).
(I)同学甲发现:点P从左向右运动时,f(x)不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断.
(Ⅱ)求证:当x>1时,f(x)
x-1
x
3
2

(III)同学乙发现:总存在正实数a、b(a<b),使ab=ba.试问:他的判断是否正确?若不正确,请说明理由:若正确,请求出a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线x2=2py(p>0)的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)设A(x1,y1),B(x2,y2),试用x1,x2表示点M的坐标.
(Ⅱ)
FM
AB
是否为定值,如果是,请求出定值,如果不是,请说明理由.
(III)设△ABM的面积为S,试确定S的最小值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网各棱长均为2的斜三棱柱ABC-DEF中,已知BF⊥AE,BF∩CE=O,AB=AE,连接AO.
(I)求证:AO⊥平面FEBC.
(II)求二面角B-AC-E的大小.
(III)求三棱锥B-DEF的体积.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系中,对其中任何一向量X=(x1,x2),定义范数||X||,它满足以下性质:(1)||X||≥0,当且仅当X为零向量时,不等式取等号;(2)对任意的实数λ,||λX||=|λ|•||X||(注:此处点乘号为普通的乘号);(3)||X||+||Y||≥||X+Y||.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量X=(x1,x2,x3),下面给出的几个表达式中,可能表示向量X的范数的是
 
(把所有正确答案的序号都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

同步练习册答案