相关习题
 0  30750  30758  30764  30768  30774  30776  30780  30786  30788  30794  30800  30804  30806  30810  30816  30818  30824  30828  30830  30834  30836  30840  30842  30844  30845  30846  30848  30849  30850  30852  30854  30858  30860  30864  30866  30870  30876  30878  30884  30888  30890  30894  30900  30906  30908  30914  30918  30920  30926  30930  30936  30944  266669 

科目: 来源: 题型:

已知x2+y2≤25,则函数w=
8y-6x+50
的最大值为(  )
A、9B、10C、11D、12

查看答案和解析>>

科目: 来源: 题型:

要得到y=tan2x的图象,则只需将y=tan(2x+
π
6
)
的图象(  )
A、向左平移
π
6
个单位
B、向右平移
π
6
个单位
C、向左平移
π
12
个单位
D、向右平移
π
12
个单位

查看答案和解析>>

科目: 来源: 题型:

若(sinθ-cosθ)(1+sinθcosθ)≥0(0≤θ<2π),则θ的取值范围是(  )
A、[0,
π
4
]
B、[
π
4
,π]
C、[
π
4
5
4
π]
D、[
π
2
2
]

查看答案和解析>>

科目: 来源: 题型:

设集合M={x|y=
4-x2
}
,N={y|y=-x2+1,x∈R},则M∩N=(  )
A、?B、[-2,2]
C、[-2,1]D、[0,1]

查看答案和解析>>

科目: 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标与纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)(理)设Sn=
1
an+1
+
1
an+2
+…+
1
a2n
,求Sn的最小值(n>1,n∈N*);
(3)设Tk=
1
a1
+
1
a2
+…+
1
ak
求证:T2n
7n+11
36
(n>1,n∈N*)

(文)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
.若对一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,ADB为半圆,AB为直径,O为圆心,
AB
OD
=0
,Q为AB为的中点,|AB|=4,某曲线C过点Q,动点P在曲线C上,且|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线C的方程;
(2)过点D的直线l与曲线C相交于不同的两点M、N,求△OMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

28、(文)已知某函数f(x)=dx3+cx2+bx+a,满足f′(x)=-3x2+3.
(1)求实数d、c、b的值;
(2)求函数f(x)的极值;
(3)实数a为何值时,函数f(x)与x轴有只有两个交点.

查看答案和解析>>

科目: 来源: 题型:

(理)已知函数f(x)=αx3+bx2+cx+d(a、b、c、d∈R)为奇函数,且在f′(x)min=-1(x∈R),
lim
x→0
f(3+x)-f(3)
x
=8

(1)求函数f(x)的表达式;
(2)若函数f(x)的图象与函数m(x)=nx2-2x的图象有三个不同的交点,且都在y轴的右方,求实数n的取值范围;
(3)若g(x)与f(x)的表达式相同,是否存在区间[a,b],使得函数g(x)的定义域和值域都是[a,b],若存在,求出满足条件的一个区间[a,b];若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

袋里装由20个球,每个球上都记有1到20的一个号码,设号码为n的球重为f(n)=
13
n2-5n+15
(克),如果满足f(n)>n,则称该球为重球.这些球以等可能性(不受重量和号码的影响)从袋里取出.
(1)如果任意取出1球,试求该球为重球的概率;
(2)如果同时任意取出两个球,试求它们重量相等的概率.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,己知正四棱棱柱AC1中,AB=BC=1,BB1=2,连接B1C和A1C
(1)在线段CC1上求一点E使得A1C⊥面BED(即求出CE的长);
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

同步练习册答案