相关习题
 0  31101  31109  31115  31119  31125  31127  31131  31137  31139  31145  31151  31155  31157  31161  31167  31169  31175  31179  31181  31185  31187  31191  31193  31195  31196  31197  31199  31200  31201  31203  31205  31209  31211  31215  31217  31221  31227  31229  31235  31239  31241  31245  31251  31257  31259  31265  31269  31271  31277  31281  31287  31295  266669 

科目: 来源: 题型:

5、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样的方法抽出200人作进一步调查,其中低于1 500元的称为低收入者,高于3 000元的称为高收入者,则应在低收入者和高收入者中分别抽取的人数是(  )

查看答案和解析>>

科目: 来源: 题型:

已知一个空间几何体的三视图及其寸如图所示,则该空间几何体的体积是(  )
精英家教网
A、
14
3
B、
7
3
C、14
D、7

查看答案和解析>>

科目: 来源: 题型:

已知α∈(-
π
2
,0),cosα=
3
5
,则tan(α-
π
4
)=(  )
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目: 来源: 题型:

已知全集U=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x|f′(x)<0},则M∩CUN=(  )
A、[
3
2
,2]
B、[
3
2
,2)
C、(
3
2
,2]
D、(
3
2
,2)

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,已知四棱锥S-ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求证:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(Ⅰ)求证:CF⊥平面ABB1
(Ⅱ)当E是棱CC1中点时,求证:CF∥平面AEB1

查看答案和解析>>

科目: 来源: 题型:

如图1所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)求证:AB⊥平面BCC1B1
(Ⅱ)求四棱锥A-BCQP的体积;
(Ⅲ)求平面PQA与平面BCA所成锐二面角的余弦值.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,在三棱锥D-ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=
2
,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求异面直线BD与CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网数列{an}的前W项和为Sn,且Sn=
n2+3n
2
{an}数列{cn},满足cn=
an,n为奇数
2n ,n为偶数

(I)求数列{an}的通项公式,并求数列{cn}的前n项和{Tn};
(II)张三同学利用第(I)问中的Tn设计了一个程序框图(如图),但李四同学认为这个程序如果被执行将会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知几何体A-BCD的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(I )求此几何体的体积V:
(II)若F是AE上的一点,且EF=3FA求证:DF∥平面ABC
(III)试探究在棱DE上是否存在点使得AQ丄CQ,并说明理由.
精英家教网

查看答案和解析>>

同步练习册答案