相关习题
 0  32788  32796  32802  32806  32812  32814  32818  32824  32826  32832  32838  32842  32844  32848  32854  32856  32862  32866  32868  32872  32874  32878  32880  32882  32883  32884  32886  32887  32888  32890  32892  32896  32898  32902  32904  32908  32914  32916  32922  32926  32928  32932  32938  32944  32946  32952  32956  32958  32964  32968  32974  32982  266669 

科目: 来源: 题型:

已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为
3
的直线与l相交于A,与C的一个交点为B,若
AM
=
MB
,则p=
 

查看答案和解析>>

科目: 来源: 题型:

(Ⅰ)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值;
(Ⅱ)设a1,b1(k=1,2…,n)均为正数,证明:
(1)若a1b1+a2b2+…anbn≤b1+b2+…bn,则a1b1a2b2anbn≤1;
(2)若b1+b2+…bn=1,则
1n
b1b1b2b2bnbn≤b12+b22+…+bn2

查看答案和解析>>

科目: 来源: 题型:

平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn (n∈N*,r∈R,r≠-1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(Ⅰ)当CF=1时,求证:EF⊥A1C;
(Ⅱ)设二面角C-AF-E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目: 来源: 题型:

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目: 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目: 来源: 题型:

15、给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:
由此推断,当n=6时,黑色正方形互不相邻的着色方案共有
21
种,至少有两个黑色正方形相邻的着色方案共有
43
种,(结果用数值表示)

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(Ⅰ)已知平面β内有一点P′(2
2
,2),则点P′在平面α内的射影P的坐标为
 

(Ⅱ)已知平面β内的曲线C′的方程是(x′-
2
2+2y2-2=0,则曲线C′在平面α内的射影C的方程是
 

查看答案和解析>>

科目: 来源: 题型:

《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为
 
升.

查看答案和解析>>

同步练习册答案