相关习题
 0  33738  33746  33752  33756  33762  33764  33768  33774  33776  33782  33788  33792  33794  33798  33804  33806  33812  33816  33818  33822  33824  33828  33830  33832  33833  33834  33836  33837  33838  33840  33842  33846  33848  33852  33854  33858  33864  33866  33872  33876  33878  33882  33888  33894  33896  33902  33906  33908  33914  33918  33924  33932  266669 

科目: 来源: 题型:

设 O点 在△ABC内部,且有
OA
+2
OB
+3
OC
=
0
,则△ABC 的面积与△AOC 的面积的比为(  )
A、2
B、
3
2
C、3
D、
5
3

查看答案和解析>>

科目: 来源: 题型:

设正方形 ABCD,点P在线段CD的延长线上,且P点到A点的距离为1,那么,四边形ABCP的面积的最大可能值是(  )
A、
5
+2
4
B、
2
C、
5
+1
2
D、
5
+1

查看答案和解析>>

科目: 来源: 题型:

在0,1,2,3,4,5,6这七个数字组成的七位数中,不出现“246”或“15”形式 (如1523406,1024635)的数有(  )个.

查看答案和解析>>

科目: 来源: 题型:

α、β、γ 是三个平面,a、b 是两条直线,有下列三个条件:①a∥γ,b?β  ②a∥γ,b∥β  ③b∥β,a?γ.如果命题“α∩β=a,b?γ,且 ________,则 a∥b”为真命题,则可以在横线处填入的条件是(  )

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsn(θ+
π
4
)=
2
2
a,曲线C2的参数方程为
x=-1+cosθ
y=-1+sinθ
,(θ为参数,0≤θ≤π).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lnx-px+1(p∈R).
(1)p=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的极值;
(3)若对任意的x>0,恒有f(x)≤p2x2,求实数p的取值范围.

查看答案和解析>>

科目: 来源: 题型:

在直角坐标系xoy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m)、N2(0,n)且mn=3.
(Ⅰ)求直线A1N1与A2N2交点的轨迹M的方程;
(Ⅱ)已知F2(1,0),设直线l:y=kx+m与(Ⅰ)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角分别为α、β,且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:

(2012•顺义区二模)如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=
2
,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)试在线段PD上确定一点G,使CG∥平面PAF,并求三棱锥A-CDG的体积.

查看答案和解析>>

科目: 来源: 题型:

函数,若,则的取值范围是__________________。

查看答案和解析>>

科目: 来源: 题型:

已知A,B,C是△ABC的三个内角,向量
m
=(sinA-sinB,sinC),向量
n
=(
2
sinA-sinC,sinA+sinB)
m
n
共线.
(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.

查看答案和解析>>

同步练习册答案