相关习题
 0  35320  35328  35334  35338  35344  35346  35350  35356  35358  35364  35370  35374  35376  35380  35386  35388  35394  35398  35400  35404  35406  35410  35412  35414  35415  35416  35418  35419  35420  35422  35424  35428  35430  35434  35436  35440  35446  35448  35454  35458  35460  35464  35470  35476  35478  35484  35488  35490  35496  35500  35506  35514  266669 

科目: 来源: 题型:

设全集为R,集合A={x|-1<x<1},B={x|x≥0},则?R(A∪B)等于(  )

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
4(x-a)x2+4
.(a∈R)
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)设方程x2-2ax-1=0的两实根为m,n(m<n),证明函数f(x)是[m,n]上的增函数.

查看答案和解析>>

科目: 来源: 题型:

设f(x)是定义在[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=-2ax+4x3
(Ⅰ) 若f(x)在(0,1]上为增函数,求a的取值范围;
(Ⅱ) 是否存在正整数a,使f(x)的图象的最高点落在直线y=12上?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

给定集合An={1,2,3,…,n},映射f:An→An满足:
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.
则称映射f:An→An是一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1                               
i 1 2 3
f(i) 2 3 1
表2
i 1 2 3 4
f(i) 3
(1)已知表2表示的映射f:A4→A4是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);
(2)若映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,则这样的“优映射”的个数是
84
84

查看答案和解析>>

科目: 来源: 题型:

已知f(x)是偶函数,且f(x)在(0,+∞)上是增函数,若x∈[
1
2
,1]时,不等式f(ax+1)≤f(x-2)恒成立,则实数a的取值范围是(  )
A、[-2,2]
B、[-2,0]
C、[0,2]
D、(-2,2)

查看答案和解析>>

科目: 来源: 题型:

在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(???)
x 1.95 3.00 3.94 5.10 6.12
y 0.97 1.59 1.98 2.35 2.61

查看答案和解析>>

科目: 来源: 题型:

已知p:不等式x2+2x+m>0的解集为R;q:指数函数f(x)=(m+
1
4
)x
为增函数,则p是q成立的(  )

查看答案和解析>>

科目: 来源: 题型:

附加题:
已知函数f(x)=x3+ax2+
3
2
x+
3
2
a
(a为实数),
(1)求不等式f′(x)>
3
2
-ax
的解集;
(2)若f′(1)=0,①求函数的单调区间;②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<
5
16
恒成立.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2)

(1)求f(x)的解析式;
(2)当x∈[0,
π
12
]
,求f(x)的最值;
(3)若函数g(x)与函数f(x)的图象关于直线x=
π
12
对称,求函数g(x)的单调增区间.

查看答案和解析>>

科目: 来源: 题型:

有下列几个命题:
①函数y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是减函数;
②已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b);
③已知函数y=f(x)是R上的奇函数,且当x≥0时,f(x)=x(1+
3x
)
,则当x<0时,f(x)=-x(1-
3x
)

④已知定义在R上函数f(x)满足对?x,y∈R,f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,则f(x)是R上的增函数;⑤如果a>1,则函数f(x)=ax-x-a(a>0且a≠1)有两个零点.
其中正确命题的序号是
 
.(写出全部正确结论的序号)

查看答案和解析>>

同步练习册答案