相关习题
 0  45852  45860  45866  45870  45876  45878  45882  45888  45890  45896  45902  45906  45908  45912  45918  45920  45926  45930  45932  45936  45938  45942  45944  45946  45947  45948  45950  45951  45952  45954  45956  45960  45962  45966  45968  45972  45978  45980  45986  45990  45992  45996  46002  46008  46010  46016  46020  46022  46028  46032  46038  46046  266669 

科目: 来源: 题型:

如果椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上存在点P,使P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是(  )

查看答案和解析>>

科目: 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目: 来源: 题型:

函数f(x)=2x+1+m的反函数y=f-1(x)的图象经过点(10,3),则y=f(x)在区间[-1,5]上的最小值为(  )

查看答案和解析>>

科目: 来源: 题型:

(2013•松江区一模)对于双曲线C:
x2
a2
-
y2
b2
=1,(a>0,b>0)
,定义C1
x2
a2
+
y2
b2
=1
,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为
x2
4
-
y2
2
=1
,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程;
(3)过双曲线C:x2-y2=1的左焦点F,且斜率为k的直线l与双曲线C交于N1、N2两点,求证:对任意的k∈[-2-
1
4
2-
1
4
]
,在伴随曲线C1上总存在点S,使得
FN1
FN2
=
FS
2

查看答案和解析>>

科目: 来源: 题型:

(2013•松江区一模)已知递增的等差数列{an}的首项a1=1,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an
(2)设数列{cn}对任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求证:数列{bn}中的任意一项总可以表示成其他两项之积.

查看答案和解析>>

科目: 来源: 题型:

(2013•松江区一模)定义变换T将平面内的点P(x,y)(x≥0,y≥0)变换到平面内的点Q(
x
y
)

若曲线C0
x
4
+
y
2
=1(x≥0,y≥0)
经变换T后得到曲线C1,曲线C1经变换T后得到曲线C2…,依此类推,曲线Cn-1经变换T后得到曲线Cn,当n∈N*时,记曲线Cn与x、y轴正半轴的交点为An(an,0)和Bn(0,bn).某同学研究后认为曲线Cn具有如下性质:
①对任意的n∈N*,曲线Cn都关于原点对称;
②对任意的n∈N*,曲线Cn恒过点(0,2);
③对任意的n∈N*,曲线Cn均在矩形OAnDnBn(含边界)的内部,其中Dn的坐标为Dn(an,bn);
④记矩形OAnDnBn的面积为Sn,则
lim
n→∞
Sn=1

其中所有正确结论的序号是
③④
③④

查看答案和解析>>

科目: 来源: 题型:

(2007•河东区一模)已知:抛物线方程为y=
14
x2+1,点P(x0,y0)在抛物线上,且点P处抛物线的切线为直线l.
(Ⅰ)写出直线l的方程;
(Ⅱ)设直线l交x轴于点Q,求使|PQ|的长最小的P点坐标.

查看答案和解析>>

科目: 来源: 题型:

(2007•河东区一模)已知公差不为零的等差数列{xn}和等比数列{yn}中,x1=y1=1,x2=y2,x6=y3.是否存在常数a、b,使得对于一切正整数n,都有xn=logayn+b成立?如果存在,求出a和b的值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

(2007•河东区一模)箱中装有大小相同的五个白球,三个红球.现从箱中每次任意取出一个球,若取出的是红球则结束,若取出的是白球,则白球不放回并继续从箱中任意取出一个球,但取出四个白球取球也结束.以ξ表示取球结束时已取到白球的次数.
(Ⅰ)求随机变量ξ的分布列;
(Ⅱ)求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:

(2007•河东区一模)已知a、b为常数,且
lim
x→1
x+a
-b
x-1
=
1
4
,则ab=
6
6

查看答案和解析>>

同步练习册答案