相关习题
 0  46076  46084  46090  46094  46100  46102  46106  46112  46114  46120  46126  46130  46132  46136  46142  46144  46150  46154  46156  46160  46162  46166  46168  46170  46171  46172  46174  46175  46176  46178  46180  46184  46186  46190  46192  46196  46202  46204  46210  46214  46216  46220  46226  46232  46234  46240  46244  46246  46252  46256  46262  46270  266669 

科目: 来源: 题型:

设数列{an}是公比大小于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(I)求数列{an}的通项公式an
(II)设cn=log2an+1,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn
1cmcm+1
对于n∈N*恒成立?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,…,8,产品的等级系数越大表明产品的质量越好,现从某厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如图:
(I)该行业规定产品的等级系数ξ≥7的为一等品,等级系数5≤ξ<7的为二等品,等级系数3≤ξ<5的为三等品,试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(II)已知该厂生产一件该产品的利润y(单位:元)与产品的等级系数ξ的关系式为:y=
3,,3≤ξ<5
5,5≤ξ<7
8,ξ≥7
,从该厂生产的商品中任取一件,其利润记为X,用这个样本的频率分布估计总体分布,将频率视为概率,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目: 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②设随机变量ξ~N(0,σ2),且P(ξ<-1)=
1
4
,则P(0<ξ<1)=
1
4

③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④函数f(x)为R上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的是
①②④
①②④

查看答案和解析>>

科目: 来源: 题型:

(2012•洛阳模拟)图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图甲中从左向右第一组的频数为4000.在样本中记月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000]的人数依次为A1、A2、…A6.图乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,图乙输出的S=
6000
6000
.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:

安排3名护士去6所医院实习,每所医院至多2人,则不同的分配方案共有
210
210
.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:

已知两条不重合的直线m、n,两个互不重合的平面α、β,给出下列命题:
①若m⊥α,n⊥β,且m⊥n,则α⊥β;
②若m∥α,n∥β,且m∥n,则α∥β;
③若m⊥α,n∥β,则m⊥n,则α⊥β;
④若m⊥α,n∥β,且m∥n,则α∥β.
其中正确命题的个数为(  )

查看答案和解析>>

科目: 来源: 题型:

a=
1
0
(2x+1)dx,
则二项式(ax+
1
x
)6
的展开式中的常数项为(  )

查看答案和解析>>

科目: 来源: 题型:

(2012•青州市模拟)据报道,德国“伦琴”(ROSAT)卫星将在2011年10月23日某时落在地球的某个地方,砸中地球人的概率约为
1
3200
,为了研究中学生对这件事情的看法,某中学对此事进行了问卷调查,共收到2000份有效问卷,得到如下结果.
对卫星撞地球的态度 关注但不担心 关注有点担心 关注且非常关心 不关注
人数(人) 1000 500 x 300
则从收到的2000份有效问卷中,采用分层抽样的方法抽取20份,抽到的关注且非常担心的问卷份数为(  )

查看答案和解析>>

科目: 来源: 题型:

(2012•广西模拟)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的极值,证明|f(x)|>g(x)+
1
2
恒成立;
(2)是否存在实数a,使f(x)的最小值为3?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案