相关习题
 0  46935  46943  46949  46953  46959  46961  46965  46971  46973  46979  46985  46989  46991  46995  47001  47003  47009  47013  47015  47019  47021  47025  47027  47029  47030  47031  47033  47034  47035  47037  47039  47043  47045  47049  47051  47055  47061  47063  47069  47073  47075  47079  47085  47091  47093  47099  47103  47105  47111  47115  47121  47129  266669 

科目: 来源: 题型:

(2013•上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ=
30d2
30d2

查看答案和解析>>

科目: 来源: 题型:

(2013•上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是
13
18
13
18
(结果用最简分数表示).

查看答案和解析>>

科目: 来源: 题型:

(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2-3c2=0,则角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

科目: 来源: 题型:

(2013•上海)若
.
x2y2
-11
.
=
.
xx
y-y
.
,x+y=
0
0

查看答案和解析>>

科目: 来源: 题型:

(2013•上海)计算:
lim
n→ ∞
n+20
3n+13
=
1
3
1
3

查看答案和解析>>

科目: 来源: 题型:

设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).
(1)求函数F(x)=h(x)-φ(x)的极值;
(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

(2013•朝阳区二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(1,0),短轴的端点分别为B1,B2,且
FB1
FB2
=-a.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且斜率为k(k≠0)的直线l交椭圆于M,N两点,弦MN的垂直平分线与x轴相交于点D.设弦MN的中点为P,试求
|DP|
|MN|
的取值范围.

查看答案和解析>>

科目: 来源: 题型:

(2013•朝阳区二模)已知函数f(x)=
mxx2+1
+1(m≠0)
,g(x)=x2eax(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当m>0时,若对任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

(2013•朝阳区二模)为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:
成绩等级 A B C D E
成绩(分) 90 70 60 40 30
人数(名) 4 6 10 7 3
(Ⅰ)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A 或B”的概率;
(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3人,记X表示抽到成绩等级为“A或B”的学生人数,求X的分布列及其数学期望EX;
(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.

查看答案和解析>>

科目: 来源: 题型:

在圆有n条弦的长度成等差数列,最短弦长为数列的首项a1,最长弦长为an,若公差,则n的取值集合为          

查看答案和解析>>

同步练习册答案